Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones

Optimization Methods and Software - Tập 11 Số 1-4 - Trang 625-653 - 1999
J.F. Sturm1
1Research performed at Communications Research Laboratory, Supported by Netherlands Organization for , McMaster University , Hamilton, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alizadeh F., 1997, SDP-Pack user's guide

Borchers, B. 1997. “CSDP, a C library for semidefinite programming”. USA: New Mexico Tech Mathematics Faculty. Technical report

Brixius, N. and Potra, F. A. 1998. “Sdpha: A MATLAB implementation of homogeneous interior-point algorithms for semidefinite programming”. Iowa City, USA: Department of Computer Science, University of Iowa. Technical report

Davidson, T. N., Luo, Z.Q and Sturm, J. F. 1998. “A (primal form of the) positive real lemma for FIR systems”. Hamilton, Canada: Communications Research Laboratory, McMaster University. Technical report, To appear

Deng, S. and Hu, H. 1996. “Computable error bounds for semidefinite programming.”. DeKalb, USA: Department of Mathematical Sciences, Northern Illinois University. Technical report

Dussy, S. and El Ghaoui, L. 1997. “Multiobjective robust control toolbox for LMI-based control”. Paris, France: Laboratoire de Mathématiques Appliquées, ENSTA. Technical report

10.1137/S0895479896298130

El Ghaoui L., LMITOOL: A front-end for LMI optimization, user's guide

Faraut J., 1994, Analysis on Symmetric Cones, 10.1093/oso/9780198534778.001.0001

Fujisawa K., 1997, Mathematical Programming, 79, 235

Fujisawa, K., Kojima, M. and Nakata, K. 1998. “SDPA (semidefinite programming algorithm) user's manual—version 4.10.”. Vol. 152, Oh-Okayama, Meguro-ku, Tokyo, Japan: Tokyo Institute of Technology, Dept. of Information Sciences. Technical report, 2-12-1

Goldfarb, D. and Scheinberg, K. 1997. “On parametric semidefinite programming”. New York, USA: Columbia University, Department of IEOR. Technical report

Lobo M. S., 1997, Linear Algebra and Applications.

Luo, Z.Q, Sturm, J. F. and Zhang, S. “Duality and self-duality for conic convex programming”. Rotterdam, The Netherlands: Econometric Institute, Erasmus University Rotterdam. Technical Report 9620/A

Luo, Z.Q., Sturm, J. F. and Zhang, S. 1997. “Duality results for conic convex programming”. Rotterdam, The Netherlands: Econometric Institute, Erasmus University Rotterdam. Technical Report 9719/A

10.1137/0802028

10.1007/BF01585180

Monteiro R. D. C., 1996, Mathematical Programming, 72, 65

10.1287/moor.22.1.1

Roos C., 1997, Theory and algorithms for linear optimization. An interior point approach

Ross, A. M. 1998. “Optimization over cones: SDPpack versus SeDuMi”. Department IEOR, University of California at Berkeley. Technical Report 1998-10-22

Sturm J. F., 1997, Primal–Dual Interior Point Approach to Semidefinite Programming, Tinbergen Institute Research Series, 156

10.1287/moor.22.2.408

Todd M. J., 1998, Mathematical Programming, 81, 1

Toh, K. C., Todd, M. J. and Tdütüncü, R. H. 1996. “SDPT3—a MATLAB package for semidefinite programming”. Ithaca, USA: School of Operations Research and Industrial Engineering, Cornell University. Technical report

Vandenberghe L., 1994, SP: Software for semidefinite programming.

Wu, S., Luo, Z.Q and Wong, K. 1997. “Direction finding for coherent sources via Toeplitz approximation”. Hamilton, Canada: Communications Research Laboratory, McMaster University. Technical report

10.1287/moor.19.1.53

Zhang, Y. 1997. “Solving large–scale linear programs by interior–point methods under the MATLAB environment”. Houstan, USA: Department of Computational and Applied Mathematics, Rice University. Technical report