Sử dụng QMRA để hiểu rõ những rủi ro tiếp xúc tiềm năng từ SARS-CoV-2 trong môi trường nước

Springer Science and Business Media LLC - Tập 29 - Trang 7240-7253 - 2021
Neha Tyagi1, Patrick L. Gurian2, Arun Kumar1
1Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
2Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, USA

Tóm tắt

Nghiên cứu này đã điều tra nguy cơ nhiễm bệnh ở con người do việc nuốt phải nước không chủ ý trong quá trình bơi lội ở một con sông nhận nước thải chứa SARS-CoV-2 từ một nhà máy xử lý nước thải (WWTP). Phương pháp đánh giá rủi ro vi sinh vật định lượng (QMRA) đã được áp dụng để ước lượng nguy cơ sử dụng các mô hình đáp ứng liều (DRM) của các loại coronavirus thay thế khác nhau (SARS-CoV-1, MERS-CoV) và virus gây ra hầu hết các bệnh hô hấp nhiễm trùng (tức là, influenza A H5N1) do sự không có sẵn của DRM cho SARS-CoV-2. Tỷ lệ giữa nồng độ gây nhiễm và bản sao gen của SARS-CoV-2 vẫn chưa được biết đến và cũng không có dữ liệu cho các coronavirus khác. Do đó, thông tin dựa trên văn học về virus ruột đã được sử dụng để xây dựng tỷ lệ cho QMRA, mặc dù được công nhận rằng việc xác định thông tin này cho SARS-CoV-2 là ưu tiên hàng đầu, và trong trường hợp không có thông tin cụ thể cho SARS-CoV-2, một loại coronavirus khác sẽ là một thay thế tốt hơn cho các virus ruột được sử dụng ở đây. Nồng độ SARS-CoV-2 đã tiêu thụ được tính toán dao động trong khoảng từ 4.6 × 10−7 đến 80.5 bản sao gen/giọt (một lần bơi = 32 mL). Nguy cơ nhiễm bệnh (> 9 × 10−12 đến 5.8 × 10−1) được tìm thấy là > 1/10.000 nguy cơ nhiễm bệnh hàng năm. Hơn nữa, nghiên cứu chỉ ra rằng việc ước lượng nguy cơ chủ yếu phụ thuộc vào giá trị của nồng độ phân tử của SARS-CoV-2 (gc/mL). Tổng thể, cần có sự chú ý ngay lập tức để thu thập thông tin về (i) tỷ lệ virus gây nhiễm và bản sao gen, (ii) DRM cho SARS-CoV-2, và (iii) tỷ lệ giảm virus sau khi xử lý tại các nhà máy xử lý nước thải (WWTP). Cấu trúc QMRA được sử dụng trong những phát hiện hiện tại rất hữu ích trong việc phân tích và ưu tiên các rủi ro sức khỏe sắp tới do việc bơi lội ở các con sông bị ô nhiễm trong thời gian bùng phát COVID-19.

Từ khóa

#SARS-CoV-2 #QMRA #nguy cơ nhiễm bệnh #môi trường nước #virus ruột

Tài liệu tham khảo

Ahmed W, Angel N, Edson J, Bibby K, Bivins A, Brien JWO, Choi PM, Kitajima M, Simpson SL, Li J, Tscharke B, Verhagen R, Smith WJM, Zaugg J, Dierens L, Hugenholtz P, Thomas KV, Mueller JF (2020) First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment. 728:138764. https://doi.org/10.1016/j.scitotenv.2020.138764 Albuquerque ND, Baig E, Ma X, Zhang J, He W, Rowe A, Habal M, Liu M, Shalev I, Downey GP, Gorczynski R, Butany J, Leibowitz J, Weiss SR, McGilvray ID, Phillips M, Fish MJ, Levy GA (2006) Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in a/j mice. Journal of Virology. 80:10382–10394 Aslan A, Xagoraraki I, Simmons FJ, Rose JB, Dorevitch S (2011) Occurrence of Adenovirus and other enteric viruses in limited-contact freshwater recreational areas and bathing waters. Journal of Applied Microbiology. 111:1250–1261. https://doi.org/10.1111/j.1365-2672.2011.05130.x Bilal M, Nazir MS, Rasheed T, Parra-Saldivar R, Iqbal HMN (2020) Water matrices as potential source of SARS-CoV-2 transmission–an overview from environmental perspective. Case Studies in Chemical and Environmental Engineering 2:100023 Carducci A, Donzelli G, Cioni L, Verani M (2016) Quantitative microbial risk assessment in occupational settings applied to the airborne human adenovirus infection. International Journal of Environmental Research and Public Health. 13:733–743. https://doi.org/10.3390/ijerph13070733 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7 de Roda Husman AM, Lodder WJ, Rutjes SA, Schijven JF, Teunis PFM (2009) Long-term inactivation study of three enteroviruses in artificial surface and ground waters, using PCR and cell culture. Applied and Environmental Microbiology. 75:1050–1057 DeDiego ML, Pewe L, Alvarez E, Rejas MT, Perlman S, Enjuanes L (2008) Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology. 376:379–389 Dufour P, Behymer TD, Cantu R, Magnuson M, Wymer LJ (2017) Ingestion of swimming pool water by recreational swimmers. Journal of Water and Health. 15:429–437 Elsamadony M, Fujii M, Miura T, Watanabe T (2021) Possible transmission of viruses from contaminated human feces and sewage: implications for SARS-CoV-2. Science of the Total Environment 755:142575 Francy DS, Stelzer EA, Bushon RN, Brady AMG, Williston AG, Riddell KR, Borchardt MA, Spencer SK, Gellner TM (2012) Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Research. 46:4164–4178 Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, Liu L, Shan H, Lei C, Hui D, Du B, Li L, Zeng G, Yuen K, Chen R, Tang C, Wang T, Chen P, Xiang J et al (2020) Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine. 382:1708–1720. https://doi.org/10.1056/NEJMoa2002032 Haas CN (1983) Effect of effluent disinfection on risks of viral disease transmission via recreational water exposure. Journal of the Water Pollution Control Federation. 55(8):1111–1116 Haas CN (2020) Coronavirus and environmental engineering science. Environmental Engineering and Science. 37:1–2 Haas CN, Rose JB, Gerba CP (1999) Quantitative microbial risk assessment. John Wiley and Sons, New York Haramoto E, Malla B, Thakali O, Kitajima M (2020) First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of the Total Environment. 737:140405. https://doi.org/10.1016/j.scitotenv.2020.140405 He J-W, Jiang S (2005) Quantification of Enterococci and human Adenoviruses in environmental samples by real-time PCR. Applied and Environmental Microbiology. 71(5):2250–2255 Heller L, Mota CR, Greco DB (2020) COVID-19 faecal-oral transmission: are we asking the right questions? Science of the Total Environment. 729:1–3. https://doi.org/10.1016/j.scitotenv.2020.138919 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 Jung S-M, Akhmetzhanov AR, Hayashi K, Linton NM, Yang Y, Yuan B, Kobayashi T, Kinoshita R, Nishiura H (2020) Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. Journal of Clinical Medicine. 9:523. https://doi.org/10.3390/jcm9020523 Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, Haramoto E, Rose JB (2020) SARS-CoV-2 in wastewater: state of the knowledge and research needs. Science of the Total Environment. 739:139076. https://doi.org/10.1016/j.scitotenv.2020.139076 Kocamemi BA, Kurt H, Hacıoglu S, Yarali C, Saatci AM, Pakdemirli B (2020) First data-set on SARS-CoV-2 detection for Istanbul wastewaters in Turkey. MedRxiv2020.05.03.20089417. https://doi.org/10.1101/2020.05.03.20089417 Kuo DHW, Simmons FJ, Blair S, Hart E, Rose JB, Xagoraraki I (2010) Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater. Water Research. 44:1520–1530 La Rosa G, Bonadonna L, Lucentini L, Sebastien K, Suffredini E (2020) Coronavirus in water environmental: Occurrence, persistence and concentration methods-a scoping review. Water Research. 179:115899. https://doi.org/10.1016/j.watres.2020.115899 Le Cann P, Ranarijaona S, Monpohe S, Monpoeho S, Le G, Ferre V (2004) Quantification of human astroviruses in sewage using real time RT-PCR. Microbiological Research. 155:11–15 Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, Gu Z, Gao L, Shi H, Mai L, Liu Y, Lin X, Lai R, Yan Z, Li X, Shan H (2020) Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 69:997–1001 Liu D, Thompson JR, Carducci A, Bi X (2020) Potential secondary transmission of SARS-CoV-2 via wastewater. Science of the Total Environment. 749:142358 Lunn TJ, Restif O, Peel AJ, Munster VJ, De Wit E, Sokolow S, Van Doremalen N, Hudson P, McCallum H (2019) Dose-response and transmission: the nexus between reservoir hosts, environment and recipient hosts. Philosophical Transactions of the Royal Society B: Biological Sciences 374:20190016. https://doi.org/10.1098/rstb.2019.0016 Marty AM, Jones MK (2020) The novel coronavirus (SARS-CoV-2) is a one health issue. One Health. 9:100123 McBride GB, Stott R, Miller W, Bambic D, Wuertz S (2013) Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Research. 47:5282–5297. https://doi.org/10.1016/j.watres.2013.06.001 Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. and Brouwer, A. (2020). Presence of SARS-Coronavirus-2 in sewage. medRxiv. 2020.03.29.20045880. https://doi.org/10.1101/2020.03.29.20045880. Mesel-Lemoine M, Millet J, Vidalain P-O, Law H, Vabret A, Lorin V, Escriou N, Albert ML, Nal B, Tangy F (2012) A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. Journal of Virology. 86:7577–7587. https://doi.org/10.1128/jvi.00269-12 Nemudryi A, Nemudraia A, Surya K, Wiegand T, Buyukyoruk M, Wilkinson R, Wiedenheft B (2020) Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. medRxiv. https://doi.org/10.1101/2020.04.15.20066746 Ng SC, Tilg H (2020) COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 69:973–974 Park JE, Jung S, Kim A (2018) MERS transmission and risk factors: a systematic review. BMC Public Health. 18(1):574. https://doi.org/10.1186/s12889-018-5484-8 Pinto RM, Costafreda MI, Bosch A (2009) Risk assessment in shellfish-borne outbreaks of hepatitis A. Applied and Environmental Microbiology. 75:7350–7373 Randazzo, W., Truchado, P., Ferrando, E.C., Simon, P., Allende, A. and Sanchez, G. (2020). SARS-CoV-2 RNA titers in wastewater anticipated COVID-19 occurrence in a low prevalence area. medRxiv. 2020.04.22.20075200. https://doi.org/10.1101/2020.04.22.20075200. Regli S, Rose JB, Haas CN, Gerba CP (1991) Modeling the risk from Giardia and viruses in drinking water. Journal of American Water Works Association. 83:76–84 Rigotto CM, Victoria M, Moresco V, Kolesnikovas CK, Correa AA, Souza DSM, Miagostovich MP, Simoes CMO, Barardi CRM (2010) Assessment of adenovirus, hepatitis A virus and rotavirus presence in environmental samples in Florianopolis. South Brazil. Journal of Applied Microbiology. 109:1979–1987 Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, Maresca M, Longobardi C, Mancon A, Romeri F, Pagani C, Moja L, Gismondo MR, Salerno F (2020) Presence and vitality of SARS-Cov-2 virus in wastewaters and rivers. medRxiv. https://doi.org/10.1101/2020.05.01.20086009 Sherchan SP, Shahin S, Ward LM, Tandukar S, Aw TG, Schmitz B, Ahmed W, Kitajima M (2020) First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Science of the Total Environment. 743:140621. https://doi.org/10.1016/j.scitotenv.2020.140621 Shutler J, Zaraska K, Holding T, Machnik M, Uppuluri K, Ashton I, Migdal L, Dahiya R (2020) Risk of SARS-CoV-2 infection from contaminated water systems. medRxiv. https://doi.org/10.1101/2020.06.17.20133504 van Heerden J, Ehlers MM, Grabow WOK (2005a) Detection and risk assessment of adenoviruses in swimming pool water. Journal of Applied Microbiology. 99:1256–1264 van Heerden J, Ehlers MM, Heim A, Grabow WOK (2005b) Prevalence, quantification and typing of adenoviruses detected in river and treated drinking water in South Africa. Journal of Applied Microbiology. 99:234–242 Wang XW, Li JS, Guo TK, Zhen B, Kong QX, Yi B, Li Z, Song N, Jin M, Xiao WJ, Zhu XM, Gu CQ, Yin J, Wei W, Yao W, Liu C, Li JF, Ou GR, Wang MN et al (2005a) Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th hospital. Journal of Virological Methods. 128:156–161. https://doi.org/10.1016/j.jviromet.2005.03.022 Wang XW, Li JS, Jin M, Zhen B, Kong QX, Song N, Xiao WJ, Yin J, Wei W, Wang GJ, Si BY, Guo BZ, Liu C, Ou GR, Wang MN, Fang TY, Chao FH, Li JW (2005b) Study on the resistance of severe acute respiratory syndrome-associated coronavirus. Journal of Virological Methods. 126:171–177. https://doi.org/10.1016/j.jviromet.2005.02.005 Wang C, Horby PW, Hayden FG, Gao GF (2020a) A novel coronavirus outbreak of global health concern. Lancet. 395:470–473. https://doi.org/10.1016/S0140-6736(20)30185-9 Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020b) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Journal of American Medical Association. 323:1061–1069. https://doi.org/10.1001/jama.2020.1585 Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W (2020c) Detection of SARS-CoV-2 in different types of clinical specimens. Journal of American Medical Association. 323:1843–1844. https://doi.org/10.1001/jama.2020.3786 Watanabe T, Bartrand TA, Weir MH, Omura T, Haas CN (2010) Development of a dose-response model for SARS coronavirus. Risk Analysis. 30:1129–1138. https://doi.org/10.1111/j.1539-6924.2010.01427.x World Health Organization. (2020a). Pneumonia of unknown cause-China [WWW document]. URL. https:// www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/. World Health Organization. (2020b). Statement on the second meeting of the international health regulations (2005) emergency committee regarding the outbreak of novel Coronavirus (2019-nCoV). Wu F, Xiao A, Zhang J, Gu X, Lee W, Kauffman K, Hanage W, Matus M, Ghaeli N, Endo N, Duvallet C, Moniz K, Erickson T, Chai P, Thompson J, Alm E (2020) SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv. https://doi.org/10.1101/2020.04.05.20051540 Wurtzer S, Marechal V, Mouchel J, Moulin L (2020) Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. https://doi.org/10.1101/2020.04.12.20062679 Xiao F, Tang M, Zheng X, Li C, He J (2020) Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv. https://doi.org/10.1101/2020.02.17.20023721 Yang L, Tu L (2020) Implications of gastrointestinal manifestations of COVID-19. The Lancet Gastroenterology and Hepatology. 5:629–630. https://doi.org/10.1016/S2468-1253(20)30132-1 Zaneti RN, Girardi V, Spilki FR, Mena K, Westphalen APC, Colares ER d C, Pozzebon AG, Etchepared RG (2020) QMRA of SARS-CoV-2 for workers in wastewater treatment plants. medRxiv. https://doi.org/10.1101/2020.05.28.20116277 Zhou J, Wang XC, Ji Z, Xu LM, Yu ZZ (2015) Source identification of bacterial and viral pathogens and their survival/fading in the process of wastewater treatment, reclamation, and environmental reuse. World Journal of Microbial Biotechnology 31:109–120 Weblink:Qmrawiki: http://qmrawiki.org/experiments/escherichia-coli. Accessed on 26-07-2020