Using Melnikov's method to solve Silnikov's problems

Xiao-Biao Lin1
1Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205 U.S.A.

Tóm tắt

SynopsisA function space approach is employed to obtain bifurcation functions for which the zeros correspond to the occurrence of periodic or aperiodic solutions near heteroclinic or homoclinic cycles. The bifurcation function for the existence of homoclinic solutions is the limiting case where the period is infinite. Examples include generalisations of Silnikov's main theorems and a retreatment of a singularly perturbed delay differential equation.

Từ khóa


Tài liệu tham khảo

10.1016/0022-0396(84)90082-2

4 Chow S. N. , Deng B. and Fiedler B. . Homoclinic bifurcations at resonant eigenvalues (preprint).

Hartman, 1964, Ordinary Differential Equations

10.1007/978-3-642-86458-2_37

10.1007/978-1-4612-9892-2

Bohr, 1951, Almost Periodic Functions

10.1007/BF01048789

10.1090/pspum/045.2/843604

5 Chow S. N. , Deng B. and Terman D. . The bifurcation of a homoclinic orbit from two heteroclinic orbits—a topological approach (preprint).

10.1016/S0196-8858(82)80012-2

Silnikov, 1965, A case of the existence of a countable number of periodic motions, Soviet Math. Dokl., 6, 163

6 Chow S. N. , Deng B. and Terman D. . The bifurcation of a homoclinic and a periodic orbit from two heteroclinic orbits—an analytic approach. SIAM J. App. Math. (to appear).

10.1007/BF01790539

10.1016/0022-0396(87)90034-9

10.1017/S0308210500018916

3 Chow S. N. and Deng B. . Homoclinic and heteroclinic bifurcation in Banach spaces (preprint).

10.1016/0022-0396(80)90104-7

Schwartz, 1969, Nonlinear Functional Analysis

10.1016/0022-0396(86)90032-X

Hartman, 1960, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana, 5, 220

10.1016/0022-0396(86)90048-3

Guckenheimer, 1983, Applied Mathematical Sciences, 42

Schecter, 1971, Principles of functional analysis

Silnikov, 1967, The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus, Soviet Math. Dokl., 8, 54

10.1070/SM1968v006n03ABEH001069

10.1070/SM1970v010n01ABEH001588

10.1007/BFb0103264

10.1007/BF03167912

10.1016/0022-0396(86)90043-4