Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abd El-Ghani, 1994, Studies on the threatened woody perennial taxa in the flora of Egypt II, Extinct and Endemic taxa. Feddes Repert., 105, 243, 10.1002/fedr.19941050318
Abdelaal, 2018, Critical checklist of the endemic vascular plants of Egypt, Phytotaxa, 360, 19, 10.11646/phytotaxa.360.1.2
Abolmaali, 2018, MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran, Ecol. Inform., 43, 116, 10.1016/j.ecoinf.2017.10.002
Al-Qaddi, 2017, Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change, Reg. Environ. Chang., 17, 143, 10.1007/s10113-016-0987-2
Amici, 2017, A multi-temporal approach in MaxEnt modelling: a new frontier for land use/land cover change detection, Ecol. Inform., 40, 40, 10.1016/j.ecoinf.2017.04.005
Attorre, 2018, How to include the impact of climate change in the extinction risk assessment of policy plant species?, J. Nat. Conserv., 44, 43, 10.1016/j.jnc.2018.06.004
Ayyad, 2000, Plant biodiversity in the Saint Catherine area of the Sinai Peninsula, Egypt. Biodivers. Conserv., 9, 265, 10.1023/A:1008973906522
Bosso, 2013, Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina, J. Nat. Conserv., 21, 72, 10.1016/j.jnc.2012.10.003
Bosso, 2016, Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin, Biol. Invasions, 18, 1759, 10.1007/s10530-016-1118-1
Brooks, 2002, Habitat loss and extinction in the hotspots of biodiversity, Conserv. Biol., 16, 909, 10.1046/j.1523-1739.2002.00530.x
Chatterjee, 2006, 21
Choudhury, 2016, Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland, Ecol. Eng., 97, 23, 10.1016/j.ecoleng.2016.07.018
Crisp, 2001, Endemism in the Australian flora, J. Biogeogr., 28, 183, 10.1046/j.1365-2699.2001.00524.x
Csergő, 2017, Less favourable climates constrain demographic strategies in plants, Ecol. Lett., 20, 969, 10.1111/ele.12794
Cuena-Lombraña, 2018, The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area, Int. J. Biometeorol., 62, 1283, 10.1007/s00484-018-1533-3
Danin, 1985, Contributions to the flora of Sinai, III. Checklist of the species collected and recorded by the Jerusalem team 1967-1982, Willdenowia, 15, 255
de Luis, 2018, Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors, PLoS One, 13, 10.1371/journal.pone.0190536
Dubuis, 2011, Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches, Divers. Distrib., 17, 1122, 10.1111/j.1472-4642.2011.00792.x
El-Demerdash, 2007
Elith, 2011, A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 17, 43, 10.1111/j.1472-4642.2010.00725.x
Fielding, 1997, A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 24, 38, 10.1017/S0376892997000088
Fois, 2015, A practical method to speed up the discovery of unknown populations using species distribution models, J. Nat. Conserv., 24, 42, 10.1016/j.jnc.2015.02.001
Fois, 2016, The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia, J. Nat. Conserv., 33, 1, 10.1016/j.jnc.2016.06.001
Fois, 2018, Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: a nice and complex strategy in its raw state?, J. Environ. Plan. Manag., 61, 332, 10.1080/09640568.2017.1306496
Fois, 2018, Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions, Ecol. Model., 385, 124, 10.1016/j.ecolmodel.2018.07.018
Fois, 2018, Does a correlation exist between environmental suitability models and plant population parameters? An experimental approach to measure the influence of disturbances and environmental changes, Ecol. Indic., 86, 1, 10.1016/j.ecolind.2017.12.009
Grainger, 2008, 21
Guisan, 2000, Predictive habitat distribution models in ecology, Ecol. Model., 135, 147, 10.1016/S0304-3800(00)00354-9
Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276
Hoveka, 2016, Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa, S. Afr. J. Bot., 102, 33, 10.1016/j.sajb.2015.07.017
IPCC, 2014, 151
Kaky, 2016, Using species distribution models to assess the importance of Egypt's protected areas for the conservation of medicinal plants, J. Arid Environ., 135, 140, 10.1016/j.jaridenv.2016.09.001
Khafagi, 2011, Predicting the potential geographical distribution of Nepeta septemcrenata in Saint Katherine Protectorate, South Sinai, Egypt using Maxent, Academia Arena, 3, 45
Khafagi, 2012, Ecological niche modeling as a tool for conservation planning: suitable habitat for Hypericum sinaicum in South Sinai, Egypt, Univers J Environ Res Technol, 2, 515
Khanum, 2013, Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling, Acta Oecol., 49, 23, 10.1016/j.actao.2013.02.007
Koch, 2017, Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: Combination of modelled plant diversity hot spots and threat patterns, J. Nat. Conserv., 35, 24, 10.1016/j.jnc.2016.11.004
Loarie, 2008, Climate change and the future of California's endemic flora, PLoS One, 3, 10.1371/journal.pone.0002502
López-Tirado, 2018, Trends in evergreen oak suitability from assembled species distribution models: assessing climate change in south-western Europe, New Forest., 49, 471, 10.1007/s11056-018-9629-5
Moustafa, 1995, Ecological notes on the floristic composition and endemic species of Saint Catherine area, South Sinai, Egypt, Egypt. J. Bot., 35, 179
Moustafa, 1995, Vegetation and landforms of the Saint Catherine area, southern Sinai, Egypt. J. Arid Environ., 30, 385, 10.1006/jare.1995.0033
Moustafa, 2001, Evaluation of plant diversity and endemism in Saint Catherine Protectorate, South Sinai, Egypt, Egypt. J. Bot., 41, 121
Moustafa, 2017, Long term monitoring of Rosa arabica populations as a threatened species in South Sinai, Egypt, J. Biodivers. Endanger. Species, 5, 1
Omar, 2017, Rosa arabica
Omar, 2017, Ecological and conservation assessment of Rosa arabica in St. Katherine-Egypt
Orsenigo, 2018, Red listing plants under full national responsibility: Extinction risk and threats in the vascular flora endemic to Italy, Biol. Conserv., 224, 213, 10.1016/j.biocon.2018.05.030
Parmesan, 2006, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637, 10.1146/annurev.ecolsys.37.091305.110100
Pearson, 2007, Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J. Biogeogr., 34, 102, 10.1111/j.1365-2699.2006.01594.x
Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026
Primack, 2006
Qin, 2017, Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China, Glob. Ecol. Conserv., 10, 139, 10.1016/j.gecco.2017.02.004
Remya, 2015, Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. Using MaxEnt model in the Eastern Ghats, India. Ecol. Eng., 82, 184, 10.1016/j.ecoleng.2015.04.053
Safaei, 2018, Modeling potential habitat of Astragalus verus Olivier for conservation decisions: a comparison of three correlative models, Flora, 242, 61, 10.1016/j.flora.2018.03.001
Sanjerehei, 2017, The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—a modeling approach, Pol. J. Ecol., 65, 97, 10.3161/15052249PJE2017.65.1.009
Silvertown, 2004, Plant coexistence and the niche, Trends Ecol. Evol., 19, 605, 10.1016/j.tree.2004.09.003
Smeraldo, 2018, Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats, Biodivers. Conserv., 27, 2425, 10.1007/s10531-018-1545-7
Souleman, 2000, Chemical investigation of the constitutive phenolics of Rosa arabica, J. Nat. Prod., 6, 82
Täckholm, 1974
Tilman, 2001, Human-caused environmental change: impacts on plant diversity and evolution, Proc. Natl. Acad. Sci. U. S. A., 98, 5433, 10.1073/pnas.091093198
Vasconcelos, 2012, Species distribution modelling as a macroecological tool: a case study using New World amphibians, Ecography, 35, 539, 10.1111/j.1600-0587.2011.07050.x
Vásquez, 2015, Human impact on tropical-alpine plant diversity in the northern Andes, Biodivers. Conserv., 24, 2673, 10.1007/s10531-015-0954-0
Warren, 2011, Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria, Ecol. Appl., 21, 335, 10.1890/10-1171.1
Woodward, 1987
Yang, 2013, Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L.: in Lesser Himalayan foothills, Ecol. Eng., 51, 83, 10.1016/j.ecoleng.2012.12.004
Yi, 2016, Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng., 92, 260, 10.1016/j.ecoleng.2016.04.010
Zaghloul, 2006, Genetic diversity within and among Sinai populations of three Ballota species (Lamiaceae), J. Heredity, 97, 45, 10.1093/jhered/esj008