Using Constrained Optimization for the Identification of Convergence Clubs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abreu M., Groot H. L. F., Florax R. J. G. M. (2005) Space and growth: A survey of empirical evidence and methods. Région Et Développement, 21, 13–44.
Akaike H. (1974) A new look at the statistical model identification. IEEE Transaction on Automatic Control 19: 716–723
Arbia G., Benedetti R., Espa G. (1999) Contextual classification in image analysis: An assessment of accuracy of ICM. Computational Statistics Data Analysis 30: 443–455
Barro R. J., Sala-i-Martin X. (1995) Economic growth theory. Mc Graw-Hill, Boston
Bartkowska M., Riedl A. (2012) Regional convergence clubs in Europe: Identification and conditioning factors. Economic Modeling 29: 22–31
Battisti M., Di Vaio G. (2008) A spatially filtered mixture of convergence regression or EU regions, 1980–2002. Empirical Economics 34: 105–121
Baumol W. (1986) Productivity growth, convergence and welfare: What the long-run data show. American Economic Review 76: 1072–1085
Ben-Ameur W. (2004) Computing the initial temperature of simulated annealing. Computational Optimization and Applications 29: 369–385
Besag J. (1974) Spatial interaction and statistical analysis of lattice systems. Journal of the Royal Statistical Society B 36: 192–236
Besag J. (1986) The statistical analysis of dirty pictures. Journal of the Royal Statistical Society B 48: 259–302
Canova F. (2004) Testing for convergence clubs in income per capita: A predictive density approach. International Economic Review 45: 49–77
Corana A., Marchesi M., Martini C., Ridella S. (1987) Minimizing multimodal functions of continuous variables with the ‘simulated annealing algorithm’. ACM Transactions on Mathematical Software 13: 262–280
Dall’erba S., Le Gallo J. (2008) Regional convergence and the impact of European structural funds over 1989–1999: A spatial econometric analysis. Papers in Regional Science 87: 219–244
Durlauf S. N., Johnson P. A. (1995) Multiple regimes and cross-country behaviour. Journal of Applied Econometrics 10: 365–384
Ertur C., Koch W. (2007) Growth, technological interdependence and spatial externalities: Theory and evidence. Journal of Applied Econometrics 22: 1033–1062
Fotheringham A. S., Brunsdon C., Charlton M. (2002) Geographically weighted regression: The analysis of spatially varying relationships. Wiley, Chichester
Fouskakis D., Draper D. (2002) Stochastic optimization: A review. International Statistical Review 70: 315–349
Galor O. (2005) From stagnation to growth: Unified growth theory. In: Aghion P., Durlauf S. N. (Eds.) Handbook of economic growth. Elsevier, North Holland, pp 171–293
Galor O. (2007) Multiple growth regimes—Insights from unified growth theory. Journal of Macroeconomics 29: 470–475
Gelfand A. E., Kim H., Sirmans C. F., Banerjee S. (2003) Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association 98: 387–396
Geman S., Geman D. (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transaction on Pattern Analysis and Machine Intelligence 6: 721–741
Geman D., Geman S., Graffigne C., Dong P. (1990) Boundary detection by constrained optimization. IEEE Transaction on Pattern Analysis and Machine Intelligence 12: 609–628
Gilli M., Winker P. (2009) Heuristic optimization methods in econometrics. In: Belsley D. A., Kontoghiorghes E. (Eds.) Handbook of computational econometrics. Wiley, New York, pp 81–119
Goffe W. L., Ferrier G., Rogers J. (1992) Simulated annealing: An initial application in econometrics. Computational Economics 5: 133–146
Goffe W. L., Ferrier G., Rogers J. (1994) Global optimization of statistical functions with simulated annealing. Journal of Econometrics 60: 65–99
Kirkpatrik S., Gelatt C. D. Jr., Vecchi M. P. (1983) Optimization by simulated annealing. Science 220: 671–680
Islam N. (2003) What have we learnt from the convergence debate?. Journal of Economic Surveys 17: 309–362
Le Gallo J., Dall’erba S. (2006) Evaluating the temporal and spatial heterogeneity of the European convergence process, 1988–1999. Journal of Regional Science 46: 269–288
Mankiw N. G., Romer D., Weil D. N. (1992) A contribution to the empirics of economic growth. The Quarterly Journal of Economics 107: 407–437
Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E. (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics 21: 1087–1092
Neven D., Gouyette C. (1995) Regional convergence in the European Community. Journal of Common Market Studies 33: 47–65
Phillips P. C., Sul D. (2007) Transition modeling and econometric convergence tests. Econometrica 75: 1771–1855
Piras, G., Postiglione, P., & Aroca, P. (2011). Specialization, R&D and productivity growth: evidence from EU regions. The Annals of Regional Science. doi: 10.1007/s00168-010-0424-2 .
Postiglione P., Benedetti R., Lafratta G. (2010) A regression tree algorithm for the identification of convergence clubs. Computational Statistics Data Analysis 54: 2776–2785
Quah D. (1997) Empirics for growth and distribution: Stratification, polarization, and convergence clubs. Journal of Economic Growth 2: 27–59
Rey S. J., Montouri B. D. (1999) US regional income convergence: A spatial econometric perspective. Regional Studies 33: 143–156
Sala-i-Martin X. (1996) The classical approach to convergence analysis. The Economic Journal 106: 1019–1036
Sebastiani M. R. (2003) Markov random-field models for estimating local labour markets. Journal of the Royal Statistical Society C—Applied Statistics 52: 201–211
Solow R. M. (1956) A contribution to the theory of economic growth. The Quarterly Journal of Economics 70: 65–94
Stander J., Silverman B. W. (1994) Temperature schedules for simulated annealing. Statistics and Computing 4: 21–32
Strenski P. N., Kirkpatrick S. (1991) Analysis of finite length annealing schedules. Algorithmica 6: 346–366
Laarhoven P. J. M., Aarts E. H. L. (1987) Simulated annealing: Theory and applications. D. Reidel Publishing Company, Dordrecht
Wheeler D., Calder C. A. (2007) An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. Journal of Geographical Systems 9: 119–144