Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy

Abhinav Agrawal1, Namita Mittal1
1Department of CSE, MNIT, Jaipur, 302017, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goodfellow, I.J., Erhan, D., Carrier, P.L., Courville, A., Mirza, M., Hamner, B., Zhou, Y.: Challenges in representation learning: a report on three machine learning contests. In: Lee, M., Hirose, A., Hou, Z. G., Kil R.M. (eds.) Neural Information Processing, ICONIP 2013. Lecture Notes in Computer Science, vol. 8228, Springer, Berlin, Heidelberg (2013)

Tang, Y.: Deep learning using support vector machines. CoRR, arXiv:1306.0239 (2013)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.: Recent advances in convolutional neural networks. arXiv preprint arXiv:1512.07108 (2015)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arxiv:cs/arXiv:1409.1556 (2014)

Wan, W., Yang, C., Li, Y.: Facial Expression Recognition Using Convolutional Neural Network. A Case Study of the Relationship Between Dataset Characteristics and Network Performance. Stanford University Reports, Stanford (2016)

Arriaga, O., Valdenegro-Toro, M., Plger, P.: Real-Time Convolutional Neural Networks for Emotion and Gender Classification. Preprint. arXiv:1710.07557 (2017)

Al-Shabi, M., Cheah, W.P., Connie, T.: Facial expression recognition using a hybrid CNN-SIFT aggregator. arXiv preprint arXiv:1608.02833 (2016)

Gogic, I., Manhart, M., Pandzix, I.S., et al.: Fast facial expression recognition using local binary features and shallow neural networks. Vis Comput. https://doi.org/10.1007/s00371-018-1585-8

Liu, K., Zhang, M., Pan, Z.: Facial expression recognition with CNN ensemble. In: International Conference on Cyberworlds IEEE, pp. 163–166 (2016)

Shin, M., Kim, M., Kwon, D.-S.: Baseline CNN structure analysis for facial expression recognition. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE (2016)

Li, S., Deng, W.: Deep Facial Expression Recognition: A Survey arXiv:1804.08348 (2018)

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for Simplicity: The all Convolutional Net. arXiv preprint arXiv:1412.6806 (2014)

Ruder, S.: An Overview of Gradient Descent Optimization Algorithms. arXiv:1609.04747 (2016)

Sang, D.V., Dat, N.V., Thuan, D.P.: Facial expression recognition using deep convolutional neural networks. In: 9th International Conference on Knowledge and Systems Engineering (KSE) (2017)