User-Generated Geographic Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., Fritz, S., Kerle, N., Jiang, B., and Laakso, M. (2016). Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS Int. J. Geo-Inf., 5.
Zhang, 2016, Using Location-Based Social Media to Chart the Patterns of People Moving between Cities: The Case of Weibo-Users in the Yangtze River Delta, J. Urban Technol., 23, 91, 10.1080/10630732.2016.1177259
Andrienko, 2013, Thematic Patterns in Georeferenced Tweets through Space-Time Visual Analytics, Comput. Sci. Eng., 15, 72, 10.1109/MCSE.2013.70
Longley, 2016, Geo-temporal Twitter demographics, Int. J. Geogr. Inf. Sci., 30, 369, 10.1080/13658816.2015.1089441
Steiger, 2015, Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data, Comput. Environ. Urban Syst., 54, 255, 10.1016/j.compenvurbsys.2015.09.007
Zheng, 2012, Mining Travel Patterns from Geotagged Photos, ACM Trans. Intell. Syst. Technol., 3, 1, 10.1145/2168752.2168770
Longley, 2015, The Geotemporal Demographics of Twitter Usage, Environ. Plan. A, 47, 465, 10.1068/a130122p
Levin, 2015, Where have all the people gone? Enhancing global conservation using night lights and social media, Ecol. Appl., 25, 2153, 10.1890/15-0113.1
Wood, 2013, Using social media to quantify nature-based tourism and recreation, Sci. Rep., 3, 2976, 10.1038/srep02976
Sonter, L.J., Watson, K.B., Wood, S.A., and Ricketts, T.H. (2016). Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media. PLoS ONE, 11.
Meentemeyer, 2016, Continental-scale quantification of landscape values using social media data, Proc. Natl. Acad. Sci. USA, 113, 12974, 10.1073/pnas.1614158113
Richards, 2015, A rapid indicator of cultural ecosystem service usage at a fine spatial scale: Content analysis of social media photographs, Ecol. Indic., 53, 187, 10.1016/j.ecolind.2015.01.034
Levin, 2017, An evaluation of crowdsourced information for assessing the visitation and perceived importance of protected areas, Appl. Geogr., 79, 115, 10.1016/j.apgeog.2016.12.009
Di Minin, E., Tenkanen, H., and Toivonen, T. (2015). Prospects and challenges for social media data in conservation science. Front. Environ. Sci., 3.
Ruths, 2014, Social media for large studies of behavior, Science, 346, 1063, 10.1126/science.346.6213.1063
Li, 2013, Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr, Cartogr. Geogr. Inf. Sci., 40, 61, 10.1080/15230406.2013.777139
Crampton, 2013, Beyond the geotag: Situating “big data” and leveraging the potential of the geoweb, Cartogr. Geogr. Inf. Sci., 40, 130, 10.1080/15230406.2013.777137
Ganti, 2011, Mobile Crowdsensing: Current State and Future Challenges, IEEE Commun. Mag., 49, 32, 10.1109/MCOM.2011.6069707
Toth, 2016, Remote sensing platforms and sensors: A survey, ISPRS J. Photogramm. Remote Sens., 115, 22, 10.1016/j.isprsjprs.2015.10.004
2014, Spectral clustering for sensing urban land use using Twitter activity, Eng. Appl. Artif. Intell., 35, 237, 10.1016/j.engappai.2014.06.019
Goodchild, 2007, Citizens as sensors: The world of volunteered geography, GeoJournal, 69, 211, 10.1007/s10708-007-9111-y
Newman, 2012, The future of citizen science: Emerging technologies and shifting paradigms, Front. Ecol. Environ., 10, 298, 10.1890/110294
Boyd, 2012, Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon, Inf. Commun. Soc., 15, 662, 10.1080/1369118X.2012.678878
Brown, 2014, Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research, Appl. Geogr., 46, 122, 10.1016/j.apgeog.2013.11.004
Hausmann, 2015, The ecosystem service of sense of place: Benefits for human well-being and biodiversity conservation, Environ. Conserv., 43, 117, 10.1017/S0376892915000314
Balmford, A., Beresford, J., Green, J., Naidoo, R., Walpole, M., and Manica, A. (2009). A Global Perspective on Trends in Nature-Based Tourism. PLoS Biol., 7.
Balmford, A., Green, J.M.H., Anderson, M., Beresford, J., Huang, C., Naidoo, R., Walpole, M., Manica, A., Ceballos-Lascurain, H., and Eagles, P. (2015). Walk on the Wild Side: Estimating the Global Magnitude of Visits to Protected Areas. PLOS Biol., 13.
Ardoin, 2015, Nature-based tourism’s impact on environmental knowledge, attitudes, and behavior: A review and analysis of the literature and potential future research, J. Sustain. Tour., 23, 838, 10.1080/09669582.2015.1024258
Knight, 2007, Embracing Opportunism in the Selection of Priority Conservation Areas, Conserv. Biol., 21, 1124, 10.1111/j.1523-1739.2007.00690.x
Hausmann, 2016, Ecotourism marketing alternative to charismatic megafauna can also support biodiversity conservation, Anim. Conserv., 20, 91, 10.1111/acv.12292
Kajala, L., Almik, A., Dahl, R., Dikšaitė, L., Erkkonen, J., Fredman, P., Jensen, F.S., Karoles, K., Sievänen, T., and Skov-Petersen, H. Visitor Monitoring in Nature Areas—A Manual Based on Experiences from the Nordic and Baltic Countries. Available online: https://www.naturvardsverket.se/Documents/publikationer/620-1258-4.pdf.
Joppa, 2015, Technology for nature conservation: An industry perspective, Ambio, 44, 522, 10.1007/s13280-015-0702-4
Pearson, 2016, Can We Tweet, Post, and Share Our Way to a More Sustainable Society? A Review of the Current Contributions and Future Potential of #Socialmediaforsustainability, Annu. Rev. Environ. Resour., 41, 363, 10.1146/annurev-environ-110615-090000
Orsi, 2013, Using geotagged photographs and GIS analysis to estimate visitor flows in natural areas, J. Nat. Conserv., 21, 359, 10.1016/j.jnc.2013.03.001
Hausmann, A., Toivonen, T., Slotow, R., Tenkanen, H., Moilanen, A., Heikinheimo, V., and Di Minin, E. (2017). Social Media Data can be used to Understand Tourists’ Preferences for Nature-based Experiences in Protected Areas. Conserv. Lett.
R Core Development Team (2015). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.