Usefulness of Akaike information criterion for making decision in two-sample problems when sample sizes are too small

Takashi Yanagawa1, Ryo Tajiri1
1Biostatistics Center, Kurume University, 67 Asahi-mach, Kurume, 830-0011, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Caski (Eds.), Proceedings of the 2nd international symposium on information theory (pp. 267–281). Budapest: Akadimiai Kiado.

Bertrand, J., Comets, E., & Mentreet, F. (2008). Comparison of model-based tests and selection strategies to detect genetic polymorphisms influencing pharmacokinetic parameters. Journal of biopharmaceutical statistics, 18(6), 1084–1102.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York: Springer.

Konishi, S., & Kitagawa, G. (2008). Information criteria and statistical modeling. New York: Springer: Springer Series. in Statistics. in Statistics.

Nagano, T., Fujita, H., Tanaka, T., Matono, S., Murata, K., Ishibashi, N., et al. (2013). A randomized controlled trial comparing antioxidant-enriched enteral nutrition with immune-enhancing enteral nutrition after esophagostomy for cancer: a pilot study. Surgery Today, 43, 1240–1249.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Yanagawa, T., Kikuchi, Y., & Brown, K. G. (1997). No-observed-adverse-effect levels in severity data. Journal of American Statistical Association, 92, 449–454.