Use of the Decision Tree Technique to Estimate Sugarcane Productivity Under Edaphoclimatic Conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beadle, C.L. 1985. Plant growth analysis. In Techniques in bioproductivity and photosynthesis, 2nd ed, ed. J. Coombs, D.O. Hall, S.P. Long, and J.M.O. Scurlock, 20–24. Oxford: Pergamon Press.
Cabena, P., P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi. 1998. Discovering data mining: From concept to implementation, 1st ed. Upper Saddle River, NJ: Prentice-Hall Publishing.
Cavalett, O., T.L. Junqueira, M.O.S. Dias, C.D. Jesus, P.E. Mantelatto, M.P. Cunha, H.C.J. Franco, T.F. Cardoso, R. Maciel Filho, C.E.V. Rossell, and A. Bonomi. 2012. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technologies and Environmental Policy 14: 399–410. doi: 10.1007/s10098-011-0424-7 .
Cohen, J.A. 1960. A coefficient of agreement of nominal scales. Educational and Psychological Measurement 20: 37–46. doi: 10.1177/001316446002000104 .
Dalchiavon, F., M.P. Carvalho, R. Montanari, M. Andreotti, and A.R. Panosso. 2014. Produtividade da cana-de-açúcar: variabilidade linear e espacial entre componentes tecnológicos e da produção. Bioscience Journal 30: 390–400.
Dias, F.L.F., J.A. Mazza, S. Matsuoka, D. Perecin, and R.F. Maule. 1999. Productivity of sugarcane in relation to climate and soils of the northwestern São Paulo state. Revista Brasileira de Ciência do Solo 23: 627–634. doi: 10.1590/S0100-06831999000300016 .
Ehsanullah, K.J., M. Jamil, and A. Ghafar. 2011. Optimizing the row spacing and seeding density to improve yield and quality of sugarcane. Crop and Environment 2: 1–5.
Elmasri, R., and S.B. Navathe. 2005. Sistemas de Banco de Dados, 4th ed. São Paulo, SP: Pearson Education.
Fernandes, J.L., J.V. Rocha, and R.A.C. Lamparelli. 2011. Sugarcane yield estimates using time series analysis of spot vegetation images. Scientia Agricola 68: 139–146. doi: 10.1590/S0103-90162011000200002 .
Ferraro, D.O., D.E. Rivero, and C.M. Ghersa. 2009. An analysis of the factors that influence sugarcane yield in Northern Argentina using classification and regression trees. Field Crop Research 112: 149–157. doi: 10.1016/j.fcr.2009.02.014 .
Marin, F.R., R.V. Ribeiro, and P.E.R. Marchiori. 2014. How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane. Theoretical and Experimental Plant Physiology 26: 49–63. doi: 10.1007/s40626-014-0006-2 .
Miller, D., J. Mccarthy, and A. Zakzeski. 2009. A fresh approach to agricultural statistics: Data mining and remote sensing. In 2009 joint statistical meetings, 3144–3155. American Statistical Association, Washington, DC.
Nonato, R.T., and S.R.M. Oliveira. 2013. Data mining techniques for identification of sugarcane crop areas in images of Landsat 5. Engenharia Agricola 33: 1268–1280. doi: 10.1590/S0100-69162013000600019 .
Pawar, M.W., D.B. More, V.T. Amodkar, and J. Snehal. 2005. Effect of intersettling spacing on sugarcane yield and quality. Sugar Tech 7: 87–89. doi: 10.1007/BF02942424 .
Quinlan, J.R. 1993. C4.5: Programs for machine learning, 1st ed. Burlington, MA: Morgan Kaufmann Press.
Singels, A., and M.A. Smit. 2009. Sugarcane response to row spacing-induced competition for light. Field Crop Research 113: 149–155. doi: 10.1016/j.fcr.2009.04.015 .
Singh, N.P., R.D.N. Verma, R.G. Singh, and S.B. Singh. 2000. Effect of plant geometry and nitrogen level on yield and juice quality of sugarcane. Sugar Tech 2: 40–43. doi: 10.1007/BF02945743 .
Witten, I.H., and E. Frank. 2005. Data mining: Practical machine learning tools and techniques, 2nd ed. Burlington, MA: Morgan Kaufmann Press.
Witten, I.H., E. Frank, and M.A. Hall. 2011. Data mining: Practical machine learning tools and techniques, 3rd ed. Burlington, MA: Morgan Kaufmann Press.