Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sử dụng phân tích cảm xúc để ghi nhận trải nghiệm của bệnh nhân ung thư nội trú từ các ý kiến viết tay bằng tiếng Persian
Tóm tắt
Hiện nay, Internet cung cấp quyền truy cập đến nhiều trải nghiệm của bệnh nhân, điều này rất quan trọng trong việc đánh giá chất lượng dịch vụ y tế. Bài báo này giới thiệu một mô hình phát hiện ý kiến của bệnh nhân ung thư về dịch vụ y tế bằng tiếng Persian, cả tích cực và tiêu cực. Để đạt được mục tiêu của nghiên cứu này, chúng tôi đã kết hợp giữa phân tích cảm xúc (SA) và các phương pháp mô hình hóa chủ đề. Tất cả các ý kiến liên quan được thu thập từ biểu mẫu phản hồi của bệnh nhân tại Viện Ung thư thuộc Đại học Y Tehran (TUMS) ở Iran, từ tháng 3 đến tháng 10 năm 2021. Các chỉ số đánh giá truyền thống như độ chính xác, độ tinh tế, độ hồi tưởng và F-measure đã được sử dụng để đánh giá hiệu suất của mô hình được đề xuất. Các kết quả thí nghiệm cho thấy mô hình SA được đề xuất đạt độ chính xác lần lượt là 89,3%, 92,6% và 90,8% trong việc phát hiện cảm xúc của bệnh nhân đối với các dịch vụ chung, dịch vụ y tế và tuổi thọ. Dựa trên kết quả mô hình hóa chủ đề, chủ đề "Di căn" thể hiện điểm số cảm xúc thấp hơn so với các chủ đề khác. Ngoài ra, bệnh nhân ung thư bày tỏ sự không hài lòng với dịch vụ đặt lịch hẹn hiện tại, trong khi các chủ đề như "Trải nghiệm tốt," "Nhân viên thân thiện" và "Hóa trị" thu hút được điểm số cảm xúc cao hơn. Việc kết hợp sử dụng SA và mô hình hóa chủ đề cung cấp những hiểu biết quý giá về dịch vụ y tế. Các nhà hoạch định chính sách có thể sử dụng kiến thức thu được từ các chủ đề và cảm xúc liên quan để nâng cao sự hài lòng của bệnh nhân đối với dịch vụ của các cơ sở ung thư.
Từ khóa
#phân tích cảm xúc #mô hình hóa chủ đề #bệnh nhân ung thư #dịch vụ y tế #ý kiến phản hồiTài liệu tham khảo
citation_journal_title=Knowl Inf Syst; citation_title=A survey of sentiment analysis in social media; citation_author=L Yue, W Chen, X Li, W Zuo, M Yin; citation_volume=60; citation_issue=2; citation_publication_date=2019; citation_pages=617-663; citation_doi=10.1007/s10115-018-1236-4; citation_id=CR1
Jindal K, Aron R. A systematic study of sentiment analysis for social media data. Materials today: proceedings. 2021 .
citation_journal_title=BMC Med Inform Decis Mak; citation_title=Social media use by physicians: a qualitative study of the new frontier of medicine; citation_author=L Campbell, Y Evans, M Pumper, MA Moreno; citation_volume=16; citation_issue=1; citation_publication_date=2016; citation_pages=1-11; citation_doi=10.1186/s12911-016-0327-y; citation_id=CR3
Khanbhai M, Anyadi P, Symons J, Flott K, Darzi A, Mayer E. Applying natural language processing and machine learning techniques to patient experience feedback: a systematic review. BMJ Health Care Inform. 2021;28(1):e100262.
Abualigah L, Alfar HE, Shehab M, Hussein AMA. Sentiment analysis in healthcare: a brief review. Recent advances in NLP: the case of Arabic language. 2020; 129–41.
citation_journal_title=Electronics; citation_title=Sentiment analysis for fake news detection; citation_author=MA Alonso, D Vilares, C Gómez-Rodríguez, J Vilares; citation_volume=10; citation_issue=11; citation_publication_date=2021; citation_pages=1348; citation_doi=10.3390/electronics10111348; citation_id=CR6
Chong WY, Selvaretnam B, Soon L-K, editors. Natural language processing for sentiment analysis: an exploratory analysis on tweets. 2014 4th international conference on artificial intelligence with applications in engineering and technology. IEEE; 2014.
Kanakaraj M, Guddeti RMR, editors. NLP based sentiment analysis on Twitter data using ensemble classifiers. 2015 3Rd international conference on signal processing, communication and networking (ICSCN). IEEE; 2015.
Abirami AM, Askarunisa A. Sentiment analysis model to emphasize the impact of online reviews in healthcare industry. Online Information Review. 2017.
citation_journal_title=J Med Internet Res; citation_title=Use of sentiment analysis for capturing patient experience from free-text comments posted online; citation_author=F Greaves, D Ramirez-Cano, C Millett, A Darzi, L Donaldson; citation_volume=15; citation_issue=11; citation_publication_date=2013; citation_doi=10.2196/jmir.2721; citation_id=CR10
Lai ST, Mafas R, editors. Sentiment Analysis in Healthcare: Motives, Challenges & Opportunities pertaining to Machine Learning. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE; 2022.
Clark EM, James T, Jones CA, Alapati A, Ukandu P, Danforth CM, et al. A sentiment analysis of breast cancer treatment experiences and healthcare perceptions across twitter. arXiv preprint arXiv:180509959. 2018.
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, et al., editors. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Seminars in cancer biology. Elsevier; 2022.
citation_journal_title=Cancer Nurs; citation_title=Symptom experiences in colorectal cancer survivors after cancer treatments: A systematic review and meta-analysis; citation_author=CJ Han, GS Yang, K Syrjala; citation_volume=43; citation_issue=3; citation_publication_date=2020; citation_pages=E132; citation_doi=10.1097/NCC.0000000000000785; citation_id=CR14
Rodrigues RG, das Dores RM, Camilo-Junior CG, Rosa TC. SentiHealth-Cancer: a sentiment analysis tool to help detecting mood of patients in online social networks. Int J Med Inform. 2016;85(1):80–95.
citation_journal_title=PLoS ONE; citation_title=Can online support groups address psychological morbidity of cancer patients? An artificial intelligence based investigation of prostate cancer trajectories; citation_author=A Adikari, D Silva, WK Ranasinghe, T Bandaragoda, O Alahakoon, R Persad; citation_volume=15; citation_issue=3; citation_publication_date=2020; citation_doi=10.1371/journal.pone.0229361; citation_id=CR16
citation_journal_title=Cogn Comput; citation_title=Multilingual sentiment analysis: state of the art and independent comparison of techniques; citation_author=K Dashtipour, S Poria, A Hussain, E Cambria, AY Hawalah, A Gelbukh; citation_volume=8; citation_publication_date=2016; citation_pages=757-771; citation_doi=10.1007/s12559-016-9415-7; citation_id=CR17
citation_journal_title=JMIR Med Inform; citation_title=Automating Large-scale Health Care Service Feedback Analysis: Sentiment Analysis and Topic Modeling Study; citation_author=G Alexander, M Bahja, GF Butt; citation_volume=10; citation_issue=4; citation_publication_date=2022; citation_doi=10.2196/29385; citation_id=CR18
citation_journal_title=J Ambient Intell Humaniz Comput; citation_title=Sentiment analysis and text categorization of cancer medical records with LSTM; citation_author=DC Edara, LP Vanukuri, V Sistla, VKK Kolli; citation_volume=14; citation_issue=5; citation_publication_date=2023; citation_pages=5309-5325; citation_doi=10.1007/s12652-019-01399-8; citation_id=CR19
citation_journal_title=Cogn Comput; citation_title=A survey on sentiment analysis in Persian: a comprehensive system perspective covering challenges and advances in resources and methods; citation_author=Z Rajabi, M Valavi; citation_volume=13; citation_issue=4; citation_publication_date=2021; citation_pages=882-902; citation_doi=10.1007/s12559-021-09886-x; citation_id=CR20
citation_journal_title=Health Informatics J; citation_title=Deep learning based analysis of sentiment dynamics in online cancer community forums: An experience; citation_author=A Balakrishnan, SM Idicula, J Jones; citation_volume=27; citation_issue=2; citation_publication_date=2021; citation_pages=14604582211007537; citation_doi=10.1177/14604582211007537; citation_id=CR21
citation_journal_title=Studies in health technology and informatics; citation_title=Understanding perceptions and attitudes in breast cancer discussions on Twitter; citation_author=F Modave, Y Zhao, J Krieger, Z He, Y Guo, J Huo; citation_volume=264; citation_publication_date=2019; citation_pages=1293; citation_id=CR22
Edara DC, Vanukuri LP, Sistla V, Kolli VKK. Sentiment analysis and text categorization of cancer medical records with LSTM. J Ambient Intell Hum Comput. 2019;10(7):1–17.
Qiu B, Zhao K, Mitra P, Wu D, Caragea C, Yen J, et al., editors. Get online support, feel better--sentiment analysis and dynamics in an online cancer survivor community. 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE; 2011.
citation_journal_title=Cancer Nurs; citation_title=Experience of ambulatory cancer care: understanding patients' perspectives of quality using sentiment analysis; citation_author=K Vehviläinen-Julkunen, S Turpeinen, T Kvist, M Ryden-Kortelainen, S Nelimarkka, S Enshaeifar; citation_volume=44; citation_issue=6; citation_publication_date=2021; citation_pages=E331-E338; citation_doi=10.1097/NCC.0000000000000845; citation_id=CR25
Dalayya S, Elsaid STFA, Ng KH, Song TL, Lim JBY. Sentiment Analysis to Understand the Perception and Requirements of a Plant-Based Food App for Cancer Patients. Hum Behav Emerg Technol. 2023;2023:1–11.
Ofek N, Caragea C, Rokach L, Biyani P, Mitra P, Yen J, et al., editors. Improving sentiment analysis in an online cancer survivor community using dynamic sentiment lexicon. 2013 international conference on social intelligence and technology. IEEE; 2013.
Baker MR, Mohammed EZ, Jihad KH, editors. Prediction of Colon Cancer Related Tweets Using Deep Learning Models. International Conference on Intelligent Systems Design and Applications. Springer; 2022.
citation_journal_title=KSII Trans Internet Inf Syst; citation_title=Public sentiment analysis and topic modeling regarding COVID-19’s three waves of total lockdown: a case study on movement control order in Malaysia; citation_author=A Alamoodi, MR Baker, O Albahri, B Zaidan, A Zaidan, W-K Wong; citation_volume=16; citation_issue=7; citation_publication_date=2022; citation_pages=2169-2190; citation_id=CR29
Pandesenda AI, Yana RR, Sukma EA, Yahya A, Widharto P, Hidayanto AN, editors. Sentiment Analysis of Service Quality of Online Healthcare Platform Using Fast Large-Margin. 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). IEEE; 2020.
Alayba AM, Palade V, England M, Iqbal R, editors. Arabic language sentiment analysis on health services. 2017 1st international workshop on arabic script analysis and recognition (asar). IEEE; 2017.
del Arco FMP, Valdivia MTM, Zafra SMJ, González MDM, Cámara EM. COPOS: corpus of patient opinions in Spanish. Application of sentiment analysis techniques. Procesamiento del Lenguaje Natural. 2016;57:83–90.
citation_journal_title=Breast Cancer Res Treat; citation_title=Learning from social media: utilizing advanced data extraction techniques to understand barriers to breast cancer treatment; citation_author=RA Freedman, K Viswanath, I Vaz-Luis, NL Keating; citation_volume=158; citation_publication_date=2016; citation_pages=395-405; citation_doi=10.1007/s10549-016-3872-2; citation_id=CR33
citation_journal_title=BMC Health Serv Res; citation_title=Development of a patients’ satisfaction analysis system using machine learning and lexicon-based methods; citation_author=S Khaleghparast, M Maleki, G Hajianfar, E Soumari, M Oveisi, HM Golandouz; citation_volume=23; citation_issue=1; citation_publication_date=2023; citation_pages=1-12; citation_doi=10.1186/s12913-023-09260-7; citation_id=CR34
citation_journal_title=IEEE Access; citation_title=Sequence-to-sequence learning-based conversion of pseudo-code to source code using neural translation approach; citation_author=UK Acharjee, M Arefin, KM Hossen, MN Uddin, MA Uddin, L Islam; citation_volume=10; citation_publication_date=2022; citation_pages=26730-26742; citation_doi=10.1109/ACCESS.2022.3155558; citation_id=CR35
Tehran University of Medical Science Cancer Institute; Available from:
https://en.tums.ac.ir/appraisetoraise/en/content/513/the-cancer-institute-ci-
.
citation_journal_title=Health Science Reports; citation_title=Development, usability and quality evaluation of the resilient mobile application for women with breast cancer; citation_author=R Rezaee, S Asadi, A Yazdani, A Rezvani, AM Kazeroon; citation_volume=5; citation_issue=4; citation_publication_date=2022; citation_doi=10.1002/hsr2.708; citation_id=CR37
citation_journal_title=Proc LTC; citation_title=Challenges and open problems in Persian text processing; citation_author=M Shamsfard; citation_volume=11; citation_publication_date=2011; citation_pages=65-69; citation_id=CR38
Kasmaiee S, Kasmaiee S, Homayounpour M. Correcting spelling mistakes in Persian texts with rules and deep learning methods. Scientific Reports. 2023;13(1):19945.
citation_journal_title=J Am Soc Inform Sci Technol; citation_title=When stopword lists make the difference; citation_author=L Dolamic, J Savoy; citation_volume=61; citation_issue=1; citation_publication_date=2010; citation_pages=200-203; citation_doi=10.1002/asi.21186; citation_id=CR40
Dolamic L, Savoy J, editors. Persian language, is stemming efficient? 2009 20th International Workshop on Database and Expert Systems Application. IEEE; 2009.
Academy of Persian Language and Literature. Available from:
https://apll.ir/
.
Basiri ME, Naghsh-Nilchi AR, Ghasem-Aghaee N. Sentiment prediction based on dempster-shafer theory of evidence. Mathematical Problems in Engineering. 2014; 2014.
citation_journal_title=J Am Soc Inform Sci Technol; citation_title=Sentiment strength detection for the social web; citation_author=M Thelwall, K Buckley, G Paltoglou; citation_volume=63; citation_issue=1; citation_publication_date=2012; citation_pages=163-173; citation_doi=10.1002/asi.21662; citation_id=CR44
citation_journal_title=Comput Intell; citation_title=Emotions in text: dimensional and categorical models; citation_author=RA Calvo, KS Mac; citation_volume=29; citation_issue=3; citation_publication_date=2013; citation_pages=527-543; citation_doi=10.1111/j.1467-8640.2012.00456.x; citation_id=CR45
Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.
Jebamani B, Murugeswari R, Nagaraj P. Online Appointment Management System in Hospitals Using Distributed Resource Allocation Algorithm. Sentimental Analysis and Deep Learning: Springer; 2022. p. 291–301.
Vidnes TK, Wahl AK, Andersen MH. Patient experiences following liver transplantation due to liver metastases from colorectal cancer. Eur J Oncol Nurs. 2013;17(3):269–74.
Mazza M, Piperis M, Aasaithambi S, Chauhan J, Sagkriotis A, Vieira C. Social Media Listening to Understand the Lived Experience of Individuals in Europe With Metastatic Breast Cancer: A Systematic Search and Content Analysis Study. Front Oncol. 2022;12.
Zhang S, Bantum E, Owen J, Elhadad N, editors. Does sustained participation in an online health community affect sentiment? AMIA Annual Symposium Proceedings; 2014: American Medical Informatics Association.
Shirzadi SM, Sheibani-Tehrani D, Shirzadi NS, Yaghoubi M. Identifying factors affecting hoteling quality in Iranian public hospitals using DEMATEL approach. J Educ Health Promot. 2020;9.
Alemi F, Torii M, Clementz L, Aron DC. Feasibility of real-time satisfaction surveys through automated analysis of patients' unstructured comments and sentiments. Qual Manag Health Care. 2012;21(1):9–19.
Shams M, Shakery A, Faili H, editors. A non-parametric LDA-based induction method for sentiment analysis. The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012). Shiraz, Iran: IEEE; 2012.
Bagheri A, Saraee M, de Jong F, editors. Sentiment classification in Persian: Introducing a mutual information-based method for feature selection. 2013 21st Iranian conference on electrical engineering (ICEE). IEEE; 2013.
Saraee M, Bagheri A, editors. Feature selection methods in Persian sentiment analysis. Natural Language Processing and Information Systems: 18th International Conference on Applications of Natural Language to Information Systems, NLDB 2013, Salford, UK, June 19–21, 2013 Proceedings 18. Springer; 2013.