Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sử dụng nấm men không truyền thống cải thiện hồ sơ hương vị rượu của Ribolla Gialla
Tóm tắt
Sở thích của người tiêu dùng về rượu vang đang thay đổi nhanh chóng theo hướng các hương vị và khẩu vị kỳ lạ. Trong nghiên cứu này, chúng tôi đã thử nghiệm năm giống nấm men không truyền thống để đánh giá khả năng cải thiện chất lượng rượu vang Ribolla Gialla. Các giống nấm men này đã được lựa chọn trước đó từ nhiều nấm men có tiềm năng sản xuất thực phẩm. Việc lên men liên tiếp nước nho Ribolla Gialla với sự bổ sung giống nấm men công nghiệp Saccharomyces cerevisiae T73 Lalvin đã được tiến hành. Zygosaccharomyces kombuchaensis CBS8849 và Kazachstania gamospora CBS10400 đã thể hiện những thuộc tính cảm quan tích cực và động lực lên men thích hợp, tiêu thụ đường nhanh và khả năng tương thích với giống nấm men công nghiệp. Đồng thời, Torulaspora microellipsoides CBS6641, Dekkera bruxellensis CBS2796 và Dekkera anomala CBS77 không thích hợp cho sản xuất rượu vì động lực lên men kém, tiêu thụ đường không hiệu quả và mức sản xuất ethanol cũng như những khuyết điểm cảm quan lớn. Do đó, chúng tôi đã chọn giống nấm K. gamospora và Z. kombuchaensis đã cải thiện đáng kể hương vị đơn điệu thông thường của rượu Ribolla bằng cách cung cấp thêm sự phức tạp về hương liệu một cách có kiểm soát và có thể tái lập.
Từ khóa
#rượu vang #nấm men không truyền thống #Ribolla Gialla #hương vị #chất lượng rượuTài liệu tham khảo
Bavčar D, Baša Česnik H, Čuš F, Košmerl T (2011) The influence of skin contact during alcoholic fermentation on the aroma composition of Ribolla Gialla and Malvasia Istriana Vitis vinifera (L.) grape wines. Int J Food Sci Technol 46:1801–1808. doi:10.1111/j.1365-2621.2011.02679.x
Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394. doi:10.1111/j.1472-765X.2011.03124.x
Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320. doi:10.1016/j.ijfoodmicro.2007.12.023
Benda I (1982) Wine and brandy. In: Prescott SC, Dunn CG, Reed G (eds) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing Co., Westport, CN
Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497. doi:10.1007/s00253-010-2619-y
Boekhout T, Kurtzman CP, O’Donnell K, Smith MT (1994) Phylogeny of the yeast genera Hanseniaspora (anamorph Kloeckera), Dekkera (anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. Int J Syst Bacteriol 44:781–786
Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882. doi:10.1016/j.fm.2010.12.001
Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol. doi:10.1038/msb4100170
Coutinho R, Branco P, Monteiro M, Malfeito-Ferreira M, Albergaria H (2013) Saccharomyces cerevisiae and Dekkera bruxellensis interactions in alcoholic fermentations: growth and 4-ethylphenol production. MicroBiotec’13: Portuguese Congress of Microbiology and Biotechnology, Aveiro, Portugal, p 94
Dairou V, Sieffermann J-M (2002) A comparison of 14 jams characterized by conventional profile and a quick original method, the flash profile. J Food Sci 67:826–834. doi:10.1111/j.1365-2621.2002.tb10685.x
Dashko S, Zhou N, Compagno C, Piškur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832. doi:10.1111/1567-1364.12161
De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156
Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32:199–224. doi:10.1111/j.1574-6968.1986.tb01194.x
Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011) Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180. doi:10.1016/j.ijfoodmicro.2011.03.020
Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22
Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C (2011) Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 38:1079–1088. doi:10.1007/s10295-010-0885-4
Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33:271–281. doi:10.1016/j.fm.2012.10.004
Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomycescerevisiae wine yeasts for reduction in ethanol content in wine. Eur Food Res, Technol
Godoy L, Martínez C, Carrasco N, Ganga MA (2008) Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. Int J Food Microbiol 127:6–11. doi:10.1016/j.ijfoodmicro.2008.05.011
Guillaume C, Delobel P, Sablayrolles J-M, Blondin B (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439. doi:10.1128/AEM.02269-06
Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734. doi:10.1371/journal.pone.0068734
Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233
Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237. doi:10.1111/1567-1364.12111
Jussier D, Dubé Morneau A, Mira de Orduña R (2006) Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay. Appl Environ Microbiol 72:221–227. doi:10.1128/AEM.72.1.221-227.2006
Kim D-H, Hong Y-A, Park H-D (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30:1633–1638. doi:10.1007/s10529-008-9726-1
Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223
Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 3:417–432
Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—a review. South Afr J Enol Vitic, South Afr
Lawless HTHH (2010) Sensory evaluation of food—principles and practices. Springer Science and Business Media, New York
Luca Riccardo Formenti AN (2014) Challenges in industrial fermentation technology research. Biotechnol J. doi:10.1002/biot.201300236
Øyvind Langsrud TN (1998) A unified framework for significance testing in fractional factorials. Comput Stat Amp Data Anal. doi:10.1016/S0167-9473(98)90151-7
Pao SS, Paulsen IT, Saier MH (1998) Major Facilitator Superfamily. Microbiol Mol Biol Rev 62:1–34
Piskur J, Langkjaer RB (2004) Yeast genome sequencing: the power of comparative genomics. Mol Microbiol 53:381–389. doi:10.1111/j.1365-2958.2004.04182.x
Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet TIG 22:183–186. doi:10.1016/j.tig.2006.02.002
Rainieri S, Pretorius IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–31
Rantsiou K, Dolci P, Giacosa S, Torchio F, Tofalo R, Torriani S, Suzzi G, Rolle L, Cocolin L (2012) Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol 78:1987–1994. doi:10.1128/AEM.06768-11
Ravasio D, Walther A, Trost K, Vrhovsek U, Wendland J (2014) An indirect assay for volatile compound production in yeast strains. Sci Rep 4:3707. doi:10.1038/srep03707
Romano A, Perello MC, Lonvaud-Funel A, Sicard G, de Revel G (2009) Sensory and analytical re-evaluation of “Brett character”. Food Chem 114:15–19. doi:10.1016/j.foodchem.2008.09.006
Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piskur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302. doi:10.1038/ncomms1305
Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J (2014) The wine and beer yeast Dekkera bruxellensis: the wine and beer yeast Dekkera bruxellensis. Yeast 31:323–332. doi:10.1002/yea.3023
Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep Commun Free Radic Res 16:15–23. doi:10.1179/174329211X12968219310954
Sousa-Dias SGT (1996) Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiol-Sgm 142:1733–1738. doi:10.1099/13500872-142-7-1733
Stone H, Sidel JL (1998) Quantitative descriptive analysis: developments, applications and the future. Food Technol, USA
Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21. doi:10.1016/j.foodchem.2006.03.030
Tiukova IA, Petterson ME, Tellgren-Roth C, Bunikis I, Eberhard T, Pettersson OV, Passoth V (2013) Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation. PLoS One 8:e58455. doi:10.1371/journal.pone.0058455
Toro ME, Vazquez F (2002) Fermentation behaviour of controlled mixed and sequential cultures of Candida cantarellii and Saccharomyces cerevisiae wine yeasts. World J Microbiol Biotechnol 18:351–358. doi:10.1023/A:1015242818473
Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast Chichester Engl 8:501–517. doi:10.1002/yea.320080703
Wedzicha BL (1984) Chemistry of sulphur dioxide in foods. Elsevier Applied Science, London, New York
Wehrens R, Weingart G, Mattivi F (2014) metaMS: an open-source pipeline for GC–MS-based untargeted metabolomics. J Chromatogr B 966:109–116. doi:10.1016/j.jchromb.2014.02.051
White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T (eds) PCR Protoc. Academic Press, Guide Methods Appl, pp 315–322
Wolfe K (2004) Evolutionary genomics: yeasts accelerate beyond BLAST. Curr Biol CB 14:R392–R394. doi:10.1016/j.cub.2004.05.015
Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713. doi:10.1038/42711
Yamaoka C, Kurita O, Kubo T (2014) Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 169:907–914. doi:10.1016/j.micres.2014.04.007
Green SR, Gray PP (1950) A differential procedure applicable to bacteriological investigation in brewing. Wallerstein Lab. Commun 13:357
Gamero Lluna A, de Jong C (2013) Novel yeasts, novel flavours. New Food Mag. 16(3)26–28