Use of mathematical modelling to assess respiratory syncytial virus epidemiology and interventions: a literature review

John C. Lang1
1Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kennilworth, USA

Tóm tắt

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infection worldwide, resulting in approximately sixty thousand annual hospitalizations of< 5-year-olds in the United States alone and three million annual hospitalizations globally. The development of over 40 vaccines and immunoprophylactic interventions targeting RSV has the potential to significantly reduce the disease burden from RSV infection in the near future. In the context of RSV, a highly contagious pathogen, dynamic transmission models (DTMs) are valuable tools in the evaluation and comparison of the effectiveness of different interventions. This review, the first of its kind for RSV DTMs, provides a valuable foundation for future modelling efforts and highlights important gaps in our understanding of RSV epidemics. Specifically, we have searched the literature using Web of Science, Scopus, Embase, and PubMed to identify all published manuscripts reporting the development of DTMs focused on the population transmission of RSV. We reviewed the resulting studies and summarized the structure, parameterization, and results of the models developed therein. We anticipate that future RSV DTMs, combined with cost-effectiveness evaluations, will play a significant role in shaping decision making in the development and implementation of intervention programs.

Từ khóa


Tài liệu tham khảo

Acedo L, Díez-Domingo J, Moraño JA, Villanueva RJ (2010a) Mathematical modelling of respiratory syncytial virus (RSV): vaccination strategies and budget applications. Epidemiol Infect 138(6):853–860. https://doi.org/10.1017/S0950268809991373

Acedo L, Moraño JA, Díez-Domingo J (2010b) Cost analysis of a vaccination strategy for respiratory syncytial virus (RSV) in a network model. Math Comput Model 52(7):1016–1022. https://doi.org/10.1016/j.mcm.2010.02.041

Aranda-Lozano D, González-Parra G, Querales J (2013) Modelamiento de la transmisión del virus respiratorio sincitial (VRS) en niños menores de cinco años. Rev Salud Públ 15(4):689–700

Arenas A, González G, Jódar L (2008) Existence of periodic solutions in a model of respiratory syncytial virus RSV. J Math Anal Appl 344(2):969–980. https://doi.org/10.1016/j.jmaa.2008.03.049

Arenas A, González-Parra G, Moraño JA (2009) Stochastic modeling of the transmission of respiratory syncytial virus (RSV) in the region of Valencia, Spain. Biosystems 96(3):206–212. https://doi.org/10.1016/j.biosystems.2009.01.007

Arenas A, González-Parra G, Jódar L (2010) Randomness in a mathematical model for the transmission of respiratory syncytial virus (RSV). Math Comput Simul 80(5):971–981. https://doi.org/10.1016/j.matcom.2009.12.001

Arguedas Y, Santana-Cibrian M, Velasco-Hernández J (2019) Transmission dynamics of acute respiratory diseases in a population structured by age. Math Biosci Eng 16:7477. https://doi.org/10.3934/mbe.2019375

Baker R, Mahmud A, Wagner C et al (2019) Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat Commun 10:5512. https://doi.org/10.1038/s41467-019-13562-y

Bloom-Feshbach K, Alonso W, Charu V et al (2013) Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. PLoS ONE 8(2):1–12. https://doi.org/10.1371/journal.pone.0054445

Brand S, Munywoki P, Walumbe D et al (2020) Reducing RSV hospitalisation in a lower-income country by vaccinating mothers-to-be and their households. eLife 9:e47003. https://doi.org/10.7554/eLife.47003

Campbell P, Geard N, Hogan A (2020) Modelling the household-level impact of a maternal respiratory syncytial virus (RSV) vaccine in a high-income setting. BMC Med 18:319. https://doi.org/10.1186/s12916-020-01783-8

Capistrán M, Moreles M, Lara B (2009) Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus B. Math Biol 71:1890–1901. https://doi.org/10.1007/s11538-009-9429-3

Chubb M, Jacobsen K (2010) Mathematical modeling and the epidemiological research process. Eur J Epidemiol 25:13–19. https://doi.org/10.1007/s10654-009-9397-9

Clarivate Analytics: Web of Science (2020). https://webofknowledge.com/. Accessed 1 Dec 2020

Committee on Infectious Diseases (2014) Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134(2):e620–e638. https://doi.org/10.1542/peds.2014-1666

Corberán-Vallet A, Santonja F (2014) A Bayesian SIRS model for the analysis of respiratory syncytial virus in the region of Valencia, Spain. Biom J 56(5):808–818. https://doi.org/10.1002/bimj.201300194

Du M, Wang Z, Hu H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3:3431. https://doi.org/10.1038/srep03431

Elsevier: Embase (2020a). https://embase.com. Accessed 1 Dec 2020

Elsevier: Scopus (2020b). https://scopus.com. Accessed 1 Dec 2020

Falsey A, Hennessey P, Formica M et al (2005) Respiratory syncytial virus infection in elderly and high-risk adults. New Engl J Med 352(17):1749–1759. https://doi.org/10.1056/NEJMoa043951

Glezen W, Taber L, Frank A, Kasel J (1986) Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140(6):543–546. https://doi.org/10.1001/archpedi.1986.02140200053026

Goldstein E, Nguyen H, Liu P et al (2018) On the relative role of different age groups during epidemics associated with respiratory syncytial virus. J Infect Dis 217(2):238–244. https://doi.org/10.1093/infdis/jix575

González-Parra G, Dobrovolny H (2018) Modeling of fusion inhibitor treatment of RSV in African green monkeys. J Theor Biol 456:62–73. https://doi.org/10.1016/j.jtbi.2018.07.029

González-Parra G, Dobrovolny H (2019) The rate of viral transfer between upper and lower respiratory tracts determines RSV illness duration. J Math Biol 79:467–483. https://doi.org/10.1007/s00285-019-01364-1

Greenhalgh D, Griffiths M (2009) Backward bifurcation, equilibrium and stability phenomena in a three-stage extended BRSV epidemic model. J Math Biol 59:1–36. https://doi.org/10.1007/s00285-008-0206-y

Greenhalgh D, Diekmann O, de Jong M (2000) Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math Biosci 165(1):1–25. https://doi.org/10.1016/S0025-5564(00)00012-2

Guerrero-Flores S, Osuna O, Vargas-De-León C (2019) Periodic solutions for seasonal SIQRS models with nonlinear infection terms. Electron J Differ Equ

Gutfraind A, Galvani A, Meyers L (2015) Efficacy and optimization of palivizumab injection regimens against respiratory syncytial virus infection. JAMA Pediatr 169(4):341–348. https://doi.org/10.1001/jamapediatrics.2014.3804

Hall C, Long C, Schnabel K (2001) Respiratory syncytial virus infections in previously healthy working adults. Clin Infect Dis 33(6):792–796. https://doi.org/10.1086/322657

Hall C, Weinberg G, Iwane M et al (2009) The burden of respiratory syncytial virus infection in young children. New Engl J Med 360(6):588–598. https://doi.org/10.1056/NEJMoa0804877

Hall C, Weinberg G, Blumkin A et al (2013) Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics 132(2):e341–e348. https://doi.org/10.1542/peds.2013-0303

Henderson F, Collier A, Clyde W, Denny F (1979) Respiratory-syncytial-virus infections, reinfections and immunity. New Engl J Med 300(10):530–534. https://doi.org/10.1056/NEJM197903083001004 (PMID: 763253)

Higgins D, Trujillo C, Keech C (2016) Advances in RSV vaccine research and development—a global agenda. Vaccine 34(26):2870–2875. https://doi.org/10.1016/j.vaccine.2016.03.109

Hodgson D, Pebody R, Panovska-Griffiths J et al (2020) Evaluating the next generation of RSV intervention strategies: a mathematical modelling study and cost-effectiveness analysis. BMC Med 18:348. https://doi.org/10.1186/s12916-020-01802-8

Hogan A, Glass K, Moore H, Anderssen R (2016) Exploring the dynamics of respiratory syncytial virus (RSV) transmission in children. Theor Popul Biol 110:78–85. https://doi.org/10.1016/j.tpb.2016.04.003

Hogan A, Campbell P, Blyth C et al (2017) Potential impact of a maternal vaccine for RSV: a mathematical modelling study. Vaccine 35(45):6172–6179. https://doi.org/10.1016/j.vaccine.2017.09.043

Jajarmi A, Yusuf A, Baleanu D, Inc M (2020) A new fractional HRSV model and its optimal control: a non-singular operator approach. Physica A 547:123860. https://doi.org/10.1016/j.physa.2019.123860

Jódar L, Villanueva R, Arenas A (2008) Modeling the spread of seasonal epidemiological diseases: theory and applications. Math Comput Model 48(3):548–557. https://doi.org/10.1016/j.mcm.2007.08.017

Jornet-Sanz M, Corberán-Vallet A, Santonja F, Villanueva R (2017) A Bayesian stochastic SIRS model with a vaccination strategy for the analysis of respiratory syncytial virus. SORT-Stat Oper Res Trans 1(1):159–176

Khan S, Dobrovolny H (2021) A study of the effects of age on the dynamics of RSV in animal models. Virus Res 304:198524. https://doi.org/10.1016/j.virusres.2021.198524

Kinyanjui T, House T, Kiti M et al (2015) Vaccine induced herd immunity for control of respiratory syncytial virus disease in a low-income country setting. PLoS ONE 10(9):1–16. https://doi.org/10.1371/journal.pone.0138018

Kinyanjui T, Pan-Ngum W, Saralamba S et al (2020) Model evaluation of target product profiles of an infant vaccine against respiratory syncytial virus (RSV) in a developed country setting. Vaccine X 4:100055. https://doi.org/10.1016/j.jvacx.2020.100055

Kombe I, Munywoki P, Baguelin M et al (2019) Model-based estimates of transmission of respiratory syncytial virus within households. Epidemics 27:1–11. https://doi.org/10.1016/j.epidem.2018.12.001

Leecaster M, Gesteland P, Greene T et al (2011) Modeling the variations in pediatric respiratory syncytial virus seasonal epidemics. BMC Infect Dis 11:105

Li Y, Reeves R, Wang X et al (2019) Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health 7(8):e1031–e1045. https://doi.org/10.1016/S2214-109X(19)30264-5

Mahikul W, White L, Poovorawan K et al (2019) Modeling household dynamics on respiratory syncytial virus (RSV). PLoS ONE 14(7):1–13. https://doi.org/10.1371/journal.pone.0219323

Moore H, Jacoby P, Hogan A et al (2014) Modelling the seasonal epidemics of respiratory syncytial virus in young children. PLoS ONE 9(6):1–8. https://doi.org/10.1371/journal.pone.0100422

Morris S, Pitzer V, Viboud C et al (2015) Demographic buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics. J R Soc Interface 12(104):20141245. https://doi.org/10.1098/rsif.2014.1245

Munn Z, Peters M, Stern C et al (2018) Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 18:143. https://doi.org/10.1186/s12874-018-0611-x

Mwambi H, Ramroop S, White L et al (2011) A frequentist approach to estimating the force of infection for a respiratory disease using repeated measurement data from a birth cohort. Stat Methods Med Res 20(5):551–570. https://doi.org/10.1177/0962280210385749

Nair H, Nokes D, Gessner B et al (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375(9725):1545–1555. https://doi.org/10.1016/S0140-6736(10)60206-1

Nair H, Simões E, Rudan I et al (2013) Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis. Lancet 381(9875):1380–1390. https://doi.org/10.1016/S0140-6736(12)61901-1

National Center for Biotechnology Information: PubMed (2020). https://pubmed.ncbi.nlm.nih.gov/. Accessed 12 Jan 2020

Nugraha E, Nuraini N (2017) Simple vaccination and prevention model of respiratory syncytial virus. Far East J Math Sci 102(9):1865–1880

Pan-Ngum W, Kinyanjui T, Kiti M et al (2017) Predicting the relative impacts of maternal and neonatal respiratory syncytial virus (RSV) vaccine target product profiles: A consensus modelling approach. Vaccine 35(2):403–409. https://doi.org/10.1016/j.vaccine.2016.10.073

PATH: RSV Vaccine and mAb Snapshot (2020). https://www.path.org/resources/rsv-vaccine-and-mab-snapshot/. Accessed 25 Aug 2020

Paynter S (2016) Incorporating transmission into causal models of infectious diseases for improved understanding of the effect and impact of risk factors. Am J Epidemiol 183(6):574–582. https://doi.org/10.1093/aje/kwv234

Paynter S, Yakob L, Simões E et al (2014) Using mathematical transmission modelling to investigate drivers of respiratory syncytial virus seasonality in children in the Philippines. PLOS ONE 9(2):1–11. https://doi.org/10.1371/journal.pone.0090094

Pitman R, Fisman D, Zaric G et al (2012) Dynamic transmission modeling: a report of the ISPOR-SMDM modeling good research practices task force working group–5. Med Decis Mak 32(5):712–721. https://doi.org/10.1177/0272989X12454578 (PMID: 22990086)

Pitzer V, Viboud C, Alonso W et al (2015) Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States. PLoS Pathog 11(1):1–14. https://doi.org/10.1371/journal.ppat.1004591

Poletti P, Merler S, Ajelli M et al (2015) Evaluating vaccination strategies for reducing infant respiratory syncytial virus infection in low-income settings. BMC Med 13:49. https://doi.org/10.1186/s12916-015-0283-x

Ponciano J, Capistrán M (2011) First principles modeling of nonlinear incidence rates in seasonal epidemics. PLoS Comput Biol 7(2):1–14. https://doi.org/10.1371/journal.pcbi.1001079

Rainisch G, Adhikari B, Meltzer M, Langley G (2020) Estimating the impact of multiple immunization products on medically-attended respiratory syncytial virus (RSV) infections in infants. Vaccine 38(2):251–257. https://doi.org/10.1016/j.vaccine.2019.10.023

Reis J, Shaman J (2016) Retrospective parameter estimation and forecast of respiratory syncytial virus in the United States. PLoS Comput Biol 12(10):1–15. https://doi.org/10.1371/journal.pcbi.1005133

Reis J, Shaman J (2018) Simulation of four respiratory viruses and inference of epidemiological parameters. Infect Dis Model 3:23–34. https://doi.org/10.1016/j.idm.2018.03.006

Reis J, Yamana T, Kandula S, Shaman J (2019) Superensemble forecast of respiratory syncytial virus outbreaks at national, regional, and state levels in the United States. Epidemics 26:1–8. https://doi.org/10.1016/j.epidem.2018.07.001

Rha B, Curns A, Lively J et al (2020) Respiratory syncytial virus-associated hospitalizations among young children: 2015–2016. Pediatrics. https://doi.org/10.1542/peds.2019-3611

Rosa S, Torres D (2018a) Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos Soliton Fract 117:142–149. https://doi.org/10.1016/j.chaos.2018.10.021

Rosa S, Torres D (2018b) parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida. Stat Optim Inform Comput 6:139–149. https://doi.org/10.19139/soic.v6i1.472/j.chaos.2018.10.021

Seroussi I, Levy N, Yom-Tov E (2020) Multi-season analysis reveals the spatial structure of disease spread. Physica A 547:124425. https://doi.org/10.1016/j.physa.2020.124425

Smith R, Sanderson M, Jones R, N’Guessan Y, Renter D, Larson R, White B (2014) Economic risk analysis model for bovine viral diarrhea virus biosecurity in cow-calf herds. Prev Vet Med 113(4):492–503. https://doi.org/10.1016/j.prevetmed.2013.11.013

Smith R, Hogan A, Mercer G (2017) Unexpected infection spikes in a model of respiratory syncytial virus vaccination. Vaccines 5(2):1–15. https://doi.org/10.3390/vaccines5020012

van Boven M, Teirlinck A, Meijer A et al (2020) Estimating transmission parameters for respiratory syncytial virus and predicting the impact of maternal and pediatric vaccination. J Infect Dis 222(Supplement 7):S688–S694. https://doi.org/10.1093/infdis/jiaa424

Villanueva-Oller J, Acedo L, Moraño J, Sánchez-Sánchez A (2013) Epidemic random network simulations in a distributed computing environment. Abstr Appl Anal 2013:462801. https://doi.org/10.1155/2013/462801

Weber A, Weber M, Milligan P (2001) Modeling epidemics caused by respiratory syncytial virus (RSV). Math Biosci 172(2):95–113

White LJ, Waris M, Cane PA et al (2005) The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: seasonality and cross-protection. Epidemiol Infect 133(2):279–289. https://doi.org/10.1017/S0950268804003450

White L, Mandl J, Gomes M et al (2007) Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Math Biosci 209(1):222–239. https://doi.org/10.1016/j.mbs.2006.08.018

Widmer K, Zhu Y, Williams J et al (2012) Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults. J Infect Dis 206(1):56–62. https://doi.org/10.1093/infdis/jis309

Widmer K, Griffin M, Zhu Y et al (2014) Respiratory syncytial virus- and human metapneumovirus-associated emergency department and hospital burden in adults. Influenza Other Resp 8(3):347–352. https://doi.org/10.1111/irv.12234

Yamin D, Jones F, DeVincenzo J et al (2016) Vaccination strategies against respiratory syncytial virus. Proc Natl Acad Sci USA 113(46):13239–13244. https://doi.org/10.1073/pnas.1522597113

Zhang T, Liu J, Ten Z (2012) Existence of positive periodic solutions of an SEIR model with periodic coefficients. Appl Math 57:601–616. https://doi.org/10.1007/s10492-012-0036-5