Use of mathematical modelling to assess respiratory syncytial virus epidemiology and interventions: a literature review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acedo L, Díez-Domingo J, Moraño JA, Villanueva RJ (2010a) Mathematical modelling of respiratory syncytial virus (RSV): vaccination strategies and budget applications. Epidemiol Infect 138(6):853–860. https://doi.org/10.1017/S0950268809991373
Acedo L, Moraño JA, Díez-Domingo J (2010b) Cost analysis of a vaccination strategy for respiratory syncytial virus (RSV) in a network model. Math Comput Model 52(7):1016–1022. https://doi.org/10.1016/j.mcm.2010.02.041
Aranda-Lozano D, González-Parra G, Querales J (2013) Modelamiento de la transmisión del virus respiratorio sincitial (VRS) en niños menores de cinco años. Rev Salud Públ 15(4):689–700
Arenas A, González G, Jódar L (2008) Existence of periodic solutions in a model of respiratory syncytial virus RSV. J Math Anal Appl 344(2):969–980. https://doi.org/10.1016/j.jmaa.2008.03.049
Arenas A, González-Parra G, Moraño JA (2009) Stochastic modeling of the transmission of respiratory syncytial virus (RSV) in the region of Valencia, Spain. Biosystems 96(3):206–212. https://doi.org/10.1016/j.biosystems.2009.01.007
Arenas A, González-Parra G, Jódar L (2010) Randomness in a mathematical model for the transmission of respiratory syncytial virus (RSV). Math Comput Simul 80(5):971–981. https://doi.org/10.1016/j.matcom.2009.12.001
Arguedas Y, Santana-Cibrian M, Velasco-Hernández J (2019) Transmission dynamics of acute respiratory diseases in a population structured by age. Math Biosci Eng 16:7477. https://doi.org/10.3934/mbe.2019375
Baker R, Mahmud A, Wagner C et al (2019) Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat Commun 10:5512. https://doi.org/10.1038/s41467-019-13562-y
Bloom-Feshbach K, Alonso W, Charu V et al (2013) Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. PLoS ONE 8(2):1–12. https://doi.org/10.1371/journal.pone.0054445
Brand S, Munywoki P, Walumbe D et al (2020) Reducing RSV hospitalisation in a lower-income country by vaccinating mothers-to-be and their households. eLife 9:e47003. https://doi.org/10.7554/eLife.47003
Campbell P, Geard N, Hogan A (2020) Modelling the household-level impact of a maternal respiratory syncytial virus (RSV) vaccine in a high-income setting. BMC Med 18:319. https://doi.org/10.1186/s12916-020-01783-8
Capistrán M, Moreles M, Lara B (2009) Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus B. Math Biol 71:1890–1901. https://doi.org/10.1007/s11538-009-9429-3
Chubb M, Jacobsen K (2010) Mathematical modeling and the epidemiological research process. Eur J Epidemiol 25:13–19. https://doi.org/10.1007/s10654-009-9397-9
Clarivate Analytics: Web of Science (2020). https://webofknowledge.com/. Accessed 1 Dec 2020
Committee on Infectious Diseases (2014) Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134(2):e620–e638. https://doi.org/10.1542/peds.2014-1666
Corberán-Vallet A, Santonja F (2014) A Bayesian SIRS model for the analysis of respiratory syncytial virus in the region of Valencia, Spain. Biom J 56(5):808–818. https://doi.org/10.1002/bimj.201300194
Du M, Wang Z, Hu H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3:3431. https://doi.org/10.1038/srep03431
Elsevier: Embase (2020a). https://embase.com. Accessed 1 Dec 2020
Elsevier: Scopus (2020b). https://scopus.com. Accessed 1 Dec 2020
Falsey A, Hennessey P, Formica M et al (2005) Respiratory syncytial virus infection in elderly and high-risk adults. New Engl J Med 352(17):1749–1759. https://doi.org/10.1056/NEJMoa043951
Glezen W, Taber L, Frank A, Kasel J (1986) Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140(6):543–546. https://doi.org/10.1001/archpedi.1986.02140200053026
Goldstein E, Nguyen H, Liu P et al (2018) On the relative role of different age groups during epidemics associated with respiratory syncytial virus. J Infect Dis 217(2):238–244. https://doi.org/10.1093/infdis/jix575
González-Parra G, Dobrovolny H (2018) Modeling of fusion inhibitor treatment of RSV in African green monkeys. J Theor Biol 456:62–73. https://doi.org/10.1016/j.jtbi.2018.07.029
González-Parra G, Dobrovolny H (2019) The rate of viral transfer between upper and lower respiratory tracts determines RSV illness duration. J Math Biol 79:467–483. https://doi.org/10.1007/s00285-019-01364-1
Greenhalgh D, Griffiths M (2009) Backward bifurcation, equilibrium and stability phenomena in a three-stage extended BRSV epidemic model. J Math Biol 59:1–36. https://doi.org/10.1007/s00285-008-0206-y
Greenhalgh D, Diekmann O, de Jong M (2000) Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math Biosci 165(1):1–25. https://doi.org/10.1016/S0025-5564(00)00012-2
Guerrero-Flores S, Osuna O, Vargas-De-León C (2019) Periodic solutions for seasonal SIQRS models with nonlinear infection terms. Electron J Differ Equ
Gutfraind A, Galvani A, Meyers L (2015) Efficacy and optimization of palivizumab injection regimens against respiratory syncytial virus infection. JAMA Pediatr 169(4):341–348. https://doi.org/10.1001/jamapediatrics.2014.3804
Hall C, Long C, Schnabel K (2001) Respiratory syncytial virus infections in previously healthy working adults. Clin Infect Dis 33(6):792–796. https://doi.org/10.1086/322657
Hall C, Weinberg G, Iwane M et al (2009) The burden of respiratory syncytial virus infection in young children. New Engl J Med 360(6):588–598. https://doi.org/10.1056/NEJMoa0804877
Hall C, Weinberg G, Blumkin A et al (2013) Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics 132(2):e341–e348. https://doi.org/10.1542/peds.2013-0303
Henderson F, Collier A, Clyde W, Denny F (1979) Respiratory-syncytial-virus infections, reinfections and immunity. New Engl J Med 300(10):530–534. https://doi.org/10.1056/NEJM197903083001004 (PMID: 763253)
Higgins D, Trujillo C, Keech C (2016) Advances in RSV vaccine research and development—a global agenda. Vaccine 34(26):2870–2875. https://doi.org/10.1016/j.vaccine.2016.03.109
Hodgson D, Pebody R, Panovska-Griffiths J et al (2020) Evaluating the next generation of RSV intervention strategies: a mathematical modelling study and cost-effectiveness analysis. BMC Med 18:348. https://doi.org/10.1186/s12916-020-01802-8
Hogan A, Glass K, Moore H, Anderssen R (2016) Exploring the dynamics of respiratory syncytial virus (RSV) transmission in children. Theor Popul Biol 110:78–85. https://doi.org/10.1016/j.tpb.2016.04.003
Hogan A, Campbell P, Blyth C et al (2017) Potential impact of a maternal vaccine for RSV: a mathematical modelling study. Vaccine 35(45):6172–6179. https://doi.org/10.1016/j.vaccine.2017.09.043
Jajarmi A, Yusuf A, Baleanu D, Inc M (2020) A new fractional HRSV model and its optimal control: a non-singular operator approach. Physica A 547:123860. https://doi.org/10.1016/j.physa.2019.123860
Jódar L, Villanueva R, Arenas A (2008) Modeling the spread of seasonal epidemiological diseases: theory and applications. Math Comput Model 48(3):548–557. https://doi.org/10.1016/j.mcm.2007.08.017
Jornet-Sanz M, Corberán-Vallet A, Santonja F, Villanueva R (2017) A Bayesian stochastic SIRS model with a vaccination strategy for the analysis of respiratory syncytial virus. SORT-Stat Oper Res Trans 1(1):159–176
Khan S, Dobrovolny H (2021) A study of the effects of age on the dynamics of RSV in animal models. Virus Res 304:198524. https://doi.org/10.1016/j.virusres.2021.198524
Kinyanjui T, House T, Kiti M et al (2015) Vaccine induced herd immunity for control of respiratory syncytial virus disease in a low-income country setting. PLoS ONE 10(9):1–16. https://doi.org/10.1371/journal.pone.0138018
Kinyanjui T, Pan-Ngum W, Saralamba S et al (2020) Model evaluation of target product profiles of an infant vaccine against respiratory syncytial virus (RSV) in a developed country setting. Vaccine X 4:100055. https://doi.org/10.1016/j.jvacx.2020.100055
Kombe I, Munywoki P, Baguelin M et al (2019) Model-based estimates of transmission of respiratory syncytial virus within households. Epidemics 27:1–11. https://doi.org/10.1016/j.epidem.2018.12.001
Leecaster M, Gesteland P, Greene T et al (2011) Modeling the variations in pediatric respiratory syncytial virus seasonal epidemics. BMC Infect Dis 11:105
Li Y, Reeves R, Wang X et al (2019) Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health 7(8):e1031–e1045. https://doi.org/10.1016/S2214-109X(19)30264-5
Mahikul W, White L, Poovorawan K et al (2019) Modeling household dynamics on respiratory syncytial virus (RSV). PLoS ONE 14(7):1–13. https://doi.org/10.1371/journal.pone.0219323
Moore H, Jacoby P, Hogan A et al (2014) Modelling the seasonal epidemics of respiratory syncytial virus in young children. PLoS ONE 9(6):1–8. https://doi.org/10.1371/journal.pone.0100422
Morris S, Pitzer V, Viboud C et al (2015) Demographic buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics. J R Soc Interface 12(104):20141245. https://doi.org/10.1098/rsif.2014.1245
Munn Z, Peters M, Stern C et al (2018) Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 18:143. https://doi.org/10.1186/s12874-018-0611-x
Mwambi H, Ramroop S, White L et al (2011) A frequentist approach to estimating the force of infection for a respiratory disease using repeated measurement data from a birth cohort. Stat Methods Med Res 20(5):551–570. https://doi.org/10.1177/0962280210385749
Nair H, Nokes D, Gessner B et al (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375(9725):1545–1555. https://doi.org/10.1016/S0140-6736(10)60206-1
Nair H, Simões E, Rudan I et al (2013) Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis. Lancet 381(9875):1380–1390. https://doi.org/10.1016/S0140-6736(12)61901-1
National Center for Biotechnology Information: PubMed (2020). https://pubmed.ncbi.nlm.nih.gov/. Accessed 12 Jan 2020
Nugraha E, Nuraini N (2017) Simple vaccination and prevention model of respiratory syncytial virus. Far East J Math Sci 102(9):1865–1880
Pan-Ngum W, Kinyanjui T, Kiti M et al (2017) Predicting the relative impacts of maternal and neonatal respiratory syncytial virus (RSV) vaccine target product profiles: A consensus modelling approach. Vaccine 35(2):403–409. https://doi.org/10.1016/j.vaccine.2016.10.073
PATH: RSV Vaccine and mAb Snapshot (2020). https://www.path.org/resources/rsv-vaccine-and-mab-snapshot/. Accessed 25 Aug 2020
Paynter S (2016) Incorporating transmission into causal models of infectious diseases for improved understanding of the effect and impact of risk factors. Am J Epidemiol 183(6):574–582. https://doi.org/10.1093/aje/kwv234
Paynter S, Yakob L, Simões E et al (2014) Using mathematical transmission modelling to investigate drivers of respiratory syncytial virus seasonality in children in the Philippines. PLOS ONE 9(2):1–11. https://doi.org/10.1371/journal.pone.0090094
Pitman R, Fisman D, Zaric G et al (2012) Dynamic transmission modeling: a report of the ISPOR-SMDM modeling good research practices task force working group–5. Med Decis Mak 32(5):712–721. https://doi.org/10.1177/0272989X12454578 (PMID: 22990086)
Pitzer V, Viboud C, Alonso W et al (2015) Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States. PLoS Pathog 11(1):1–14. https://doi.org/10.1371/journal.ppat.1004591
Poletti P, Merler S, Ajelli M et al (2015) Evaluating vaccination strategies for reducing infant respiratory syncytial virus infection in low-income settings. BMC Med 13:49. https://doi.org/10.1186/s12916-015-0283-x
Ponciano J, Capistrán M (2011) First principles modeling of nonlinear incidence rates in seasonal epidemics. PLoS Comput Biol 7(2):1–14. https://doi.org/10.1371/journal.pcbi.1001079
Rainisch G, Adhikari B, Meltzer M, Langley G (2020) Estimating the impact of multiple immunization products on medically-attended respiratory syncytial virus (RSV) infections in infants. Vaccine 38(2):251–257. https://doi.org/10.1016/j.vaccine.2019.10.023
Reis J, Shaman J (2016) Retrospective parameter estimation and forecast of respiratory syncytial virus in the United States. PLoS Comput Biol 12(10):1–15. https://doi.org/10.1371/journal.pcbi.1005133
Reis J, Shaman J (2018) Simulation of four respiratory viruses and inference of epidemiological parameters. Infect Dis Model 3:23–34. https://doi.org/10.1016/j.idm.2018.03.006
Reis J, Yamana T, Kandula S, Shaman J (2019) Superensemble forecast of respiratory syncytial virus outbreaks at national, regional, and state levels in the United States. Epidemics 26:1–8. https://doi.org/10.1016/j.epidem.2018.07.001
Rha B, Curns A, Lively J et al (2020) Respiratory syncytial virus-associated hospitalizations among young children: 2015–2016. Pediatrics. https://doi.org/10.1542/peds.2019-3611
Rosa S, Torres D (2018a) Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos Soliton Fract 117:142–149. https://doi.org/10.1016/j.chaos.2018.10.021
Rosa S, Torres D (2018b) parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida. Stat Optim Inform Comput 6:139–149. https://doi.org/10.19139/soic.v6i1.472/j.chaos.2018.10.021
Seroussi I, Levy N, Yom-Tov E (2020) Multi-season analysis reveals the spatial structure of disease spread. Physica A 547:124425. https://doi.org/10.1016/j.physa.2020.124425
Smith R, Sanderson M, Jones R, N’Guessan Y, Renter D, Larson R, White B (2014) Economic risk analysis model for bovine viral diarrhea virus biosecurity in cow-calf herds. Prev Vet Med 113(4):492–503. https://doi.org/10.1016/j.prevetmed.2013.11.013
Smith R, Hogan A, Mercer G (2017) Unexpected infection spikes in a model of respiratory syncytial virus vaccination. Vaccines 5(2):1–15. https://doi.org/10.3390/vaccines5020012
van Boven M, Teirlinck A, Meijer A et al (2020) Estimating transmission parameters for respiratory syncytial virus and predicting the impact of maternal and pediatric vaccination. J Infect Dis 222(Supplement 7):S688–S694. https://doi.org/10.1093/infdis/jiaa424
Villanueva-Oller J, Acedo L, Moraño J, Sánchez-Sánchez A (2013) Epidemic random network simulations in a distributed computing environment. Abstr Appl Anal 2013:462801. https://doi.org/10.1155/2013/462801
Weber A, Weber M, Milligan P (2001) Modeling epidemics caused by respiratory syncytial virus (RSV). Math Biosci 172(2):95–113
White LJ, Waris M, Cane PA et al (2005) The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: seasonality and cross-protection. Epidemiol Infect 133(2):279–289. https://doi.org/10.1017/S0950268804003450
White L, Mandl J, Gomes M et al (2007) Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Math Biosci 209(1):222–239. https://doi.org/10.1016/j.mbs.2006.08.018
Widmer K, Zhu Y, Williams J et al (2012) Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults. J Infect Dis 206(1):56–62. https://doi.org/10.1093/infdis/jis309
Widmer K, Griffin M, Zhu Y et al (2014) Respiratory syncytial virus- and human metapneumovirus-associated emergency department and hospital burden in adults. Influenza Other Resp 8(3):347–352. https://doi.org/10.1111/irv.12234
Yamin D, Jones F, DeVincenzo J et al (2016) Vaccination strategies against respiratory syncytial virus. Proc Natl Acad Sci USA 113(46):13239–13244. https://doi.org/10.1073/pnas.1522597113
Zhang T, Liu J, Ten Z (2012) Existence of positive periodic solutions of an SEIR model with periodic coefficients. Appl Math 57:601–616. https://doi.org/10.1007/s10492-012-0036-5