Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier

Nature Biomedical Engineering - Tập 3 Số 8 - Trang 611-620
Lyndsay M. Stapleton1, Amanda N. Steele1, Hanjay Wang2, Hector Lopez Hernandez3, Anthony C. Yu3, Michael J. Paulsen2, Anton A. A. Smith3, Gillie A. Roth1, Akshara D. Thakore2, Haley J. Lucian2, Kailey P. Totherow1, Sam W. Baker4, Yuko Tada5, Justin M. Farry2, Anahita Eskandari2, Camille E. Hironaka2, Kevin Jaatinen2, Kiah M. Williams2, Hunter Bergamasco2, Clifton Marschel2, Blaine Chadwick2, Frederick Grady2, Michael Ma2, Eric A. Appel3, Y. Joseph Woo2
1Department of Bioengineering, Stanford University, Stanford, CA, USA
2Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
3Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
4Department of Comparative Medicine, Stanford University, Stanford, CA, USA
5Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lauder, C. I., Garcea, G., Strickland, A. & Maddern, G. J. Abdominal adhesion prevention: still a sticky subject? Dig. Surg. 27, 347–358 (2010).

Weibel, M. A. & Majno, G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am. J. Surg. 126, 345–353 (1973).

DiZerega, G. S. in Peritoneal Surgery (ed. DiZerega, G. S.) 3–37 (Springer, 2000).

Ito, T. et al. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28, 975–983 (2007).

Yea, Y. et al. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J. Control. Release 120, 178–185 (2007).

Hirschelmann, A., Tchartchian, G., Wallwiener, M., Hackethal, A. & De Wilde, R. L. A review of the problematic adhesion prophylaxis in gynaecological surgery. Arch. Gynecol. Obstet. 285, 1089–1097 (2012).

Shahian, D. M. et al. The society of thoracic surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann. Thorac. Surg. 88, S2–S22 (2009).

O’Brien, S. M. et al. The Society of thoracic surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. Ann. Thorac. Surg. 88, S23–S42 (2009).

Kansara, P. et al. Heart transplantation with and without prior sternotomy: analysis of the united network for organ sharing database. Transpl. Proc. 46, 249–255 (2014).

Hoffman, J. L. et al. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

Jacobsa, J. P. et al. Reoperations for pediatric and congenital heart disease: An analysis of the society of thoracic surgeons (STS) congenital heart surgery database. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 17, 2–8 (2014).

Sikirica, V. et al. The inpatient burden of abdominal and gynecological adhesiolysis in the US. BMC Surgery 11, 1–9 (2011).

Diamond, M. P., Burns, E. L., Accomando, B., Mian, S. & Holmdahl, L. Seprafilm adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 9, 237–245 (2012).

Malm, T., Bowald, S., Bylock, A. & Busch, C. Prevention of postoperative pericardial adhesions by closure of the pericardium with absorbable polymer patches. An experimental study. J. Thorac. Cardiovasc. Surg. 104, 600–607 (1992).

Duncan, D. A. et al. Prevention of postoperative pericardial adhesions with hydrophilic polymer solutions. J. Surg. Res. 45, 44–49 (1987).

Seeger, J. M. et al. Prevention of postoperative pericardial adhesions using tissue-protective solutions. J. Surg. Res. 68, 63–66 (1997).

Hoare, T., Yeo, Y., Bellas, E., Bruggeman, J. P. & Kohane, D. S. Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater. 10, 1187–1193 (2014).

Yeo, Y. & Kohane, D. S. Polymers in the prevention of peritoneal adhesions. Eur. J. Pharm. Biopharm. 68, 57–66 (2008).

Grainger, D. A., Meyer, W. R., DeCherney, A. H. & Diamond, M. P. The use of hyaluronic acid polymers to reduce postoperative adhesions. J. Gynecol. Surg. 7, 97–101 (2009).

Sawhney, A. S., Pathak, C. P., Van Rensburg, J. J., Dunn, R. C. & Hubbell, J. A. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. Biomed. Mater. Res. 28, 831–838 (1994).

Connors, R. C. et al. Postoperative pericardial adhesion prevention using carbylan-SX in a rabbit model. J. Surg. Res. 140, 237–242 (2007).

Li, L. et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35, 903–3917 (2014).

Zhu, W. et al. Metal and light free ‘click’ hydrogels for prevention of post-operative peritoneal adhesions. Polym. Chem. 5, 2018–2026 (2014).

Chan, M. et al. Reducing the oxidation level of dextran aldehyde in a chitosan/dextran-based surgical hydrogel increases biocompatibility and decreases antimicrobial efficacy. Int. J. Mol. Sci. 16, 13798–13814 (2015).

Song, L. et al. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci. Rep. 6, 37600 (2016).

Yang, Y. et al. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomater. 62, 199–209 (2017).

Banasiewicz, T. et al. Preliminary study with SprayShieldadhesion barrier system in the prevention of abdominal adhesions. Video. Mini. 8, 301–309 (2013).

Napoleone, C. et al. An observational study of CoSeal for the prevention of adhesions in pediatric cardiac surgery. Inter. Cardiovasc. Thorac. Surg. 9, 978–982 (2009).

Haensig, M. et al. Bioresorbable adhesion barrier for reducing the severity of postoperative cardiac adhesions: Focus on REPEL-CV. Med. Devices 4, 17–25 (2011).

Hirschelmann, A. et al. Is patient education about adhesions a requirement in abdominopelvic surgery? Geburtshilfe Frauenheilkd. 72, 299–304 (2012).

Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

Appel, E. A., Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).

Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014).

Appel, E. A. et al. Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat. Commun. 4, 848–852 (2015).

Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties. Adv. Funct. Mater. 25, 636–644 (2015).

Webber, M. J. et al. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2015).

Appel, E. A. et al. Supramolecular cross-linked networks via host–guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010).

Appel, E. A. et al. High-water-content hydrogels from renewable resources through host-guest interactions. J. Am. Chem. Soc. 134, 11767–11773 (2012).

Appel, E. A. et al. Sustained release of proteins from high water content supramolecular hydrogels. Biomaterials 33, 4646–4652 (2012).

Appel, E. A. et al. Activation energies control macroscopic properties of physically crosslinked materials. Angew. Chem. Int. Ed. 53, 10038–10043 (2014).

Appel, E. A. et al. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials 35, 9897–9903 (2014).

Appel, E. A. & Scherman, O. A. Gluing gels: A nanoparticle solution. Nat. Mater. 13, 231–232 (2014).

Yu, A. C. et al. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc. Natl Acad. Sci. USA 113, 14255–14260 (2016).

Evans, N. D., Oreffo, R. O., Healy, E., Thurner, P. J. & Man, Y. H. Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28, 397–409 (2013).

Arung, W., Meurisse, M. & Detry, O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 17, 4545–4553 (2011).

Alizzi, A. M. et al. Reduction of post-surgical pericardial adhesions using a pig model. Heart Lung Circ. 21, 22–29 (2012).

Lassaletta, A. D., Chu, L. M. & Selke, F. W. Effects of alcohol on pericardial adhesion formation in hypercholesterolemic swine. J. Thorac. Cardiovasc. Surg. 143, 953–959 (2012).

Lassaletta, A. D. et al. Mechanism for reduced pericardial adhesion formation in hypercholesterolemic swine supplemented with alcohol. Eur. J. Cardiothorac. Surg. 43, 1058–1064 (2013).

Macarthur, J. W. et al. Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1α analog in a translational ovine myocardial infarction model. Circ. Res. 114, 650–659 (2014).

Elmadhun, N. Y. et al. Effects of alcohol on postoperative adhesion formation in ischemic myocardium and pericardium. Ann. Thorac. Surg. 104, 545–552 (2017).

MacArthur, J. W. et al. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation 128, S79–S86 (2013).

DiZerega, G. S. et al. Peritoneal repair and post-surgical adhesion formation. Hum. Reprod. 6, 547–555 (2001).

Yashiharu, K. et al. Pharmacokinetics and biodisposition of poly(vinyl alcohol) in rats and mice. Drug Metab. Pharmacokinet. 20, 435–442 (2005).