Sử dụng mô hình dược động học dựa trên sinh lý để mô phỏng điều chỉnh liều artemether nhằm vượt qua tương tác giữa thuốc với efavirenz
Tóm tắt
Để điều trị sốt rét, bệnh nhân nhiễm HIV thường nhận artemether (80 mg hai lần mỗi ngày) đồng thời với liệu pháp điều trị kháng virus và có thể xảy ra tương tác giữa các loại thuốc. Artemether là một chất nền của CYP3A4 và CYP2B6, trong khi đó các thuốc kháng virus như efavirenz có khả năng kích thích các enzyme này và có thể làm giảm sự tiếp xúc dược động học của artemether. Mục tiêu của nghiên cứu này là phát triển một phương pháp ngoại suy in vitro in vivo (IVIVE) để mô hình hóa sự tương tác giữa efavirenz và artemether. Sau đó, các điều chỉnh liều artemether đã được mô phỏng nhằm dự đoán liều tối ưu ở những bệnh nhân đồng nhiễm và cung cấp thông tin cho thiết kế nghiên cứu tương tác trong tương lai.
Dữ liệu in vitro mô tả các tính chất hóa học, sự hấp thụ, phân phối, chuyển hóa và thải trừ của efavirenz và artemether được lấy từ tài liệu đã công bố và bao gồm trong một mô hình dược động học dựa trên sinh lý (PBPK) để dự đoán sự phân bố thuốc bằng cách mô phỏng các thử nghiệm lâm sàng ảo. Việc sử dụng efavirenz và artemether, một mình hoặc kết hợp, đã được mô phỏng để phản ánh các nghiên cứu lâm sàng trước đó và tạo điều kiện thuận lợi cho việc xác thực mô hình và giải thích thực tế những gì được mô phỏng. Efavirenz (600 mg một lần mỗi ngày) đã được sử dụng cho 50 đối tượng ảo trong 14 ngày. Tiếp theo là việc sử dụng đồng thời artemether (80 mg mỗi 8 giờ) cho hai liều đầu tiên và 80 mg (hai lần mỗi ngày) trong hai ngày tiếp theo.
Các dược động học mô phỏng và tương tác giữa thuốc đã tương đồng với dữ liệu lâm sàng có sẵn. Efavirenz kích thích sự chuyển hóa lần đầu qua gan và làm sạch gan, giảm Cmax của artemether xuống 60% và AUC xuống 80%. Các tăng liều của artemether để điều chỉnh cho tương tác đã được mô phỏng và một liều 240 mg được dự đoán là đủ để vượt qua tương tác và cho phép nồng độ artemether trong huyết tương đạt hiệu quả điều trị.
Mô hình được trình bày ở đây cung cấp một nền tảng hợp lý để thông báo cho thiết kế một nghiên cứu tương tác thuốc lâm sàng có thể tiết kiệm thời gian và tài nguyên trong khi liều tối ưu được xác định theo cách thực nghiệm. Ứng dụng rộng rãi của IVIVE có thể giúp các nhà nghiên cứu hiểu rõ hơn về các cơ chế phân tử đứng sau sự biến thiên trong sự phân bố thuốc.
Từ khóa
Tài liệu tham khảo
Alin MH, Bjorkman A, Ashton M: In vitro activity of artemisinin, its derivatives, and pyronaridine against different strains of Plasmodium falciparum. Trans R Soc Trop Med Hyg 1990, 84: 635–637. 10.1016/0035-9203(90)90129-3
Almond LM, Hoggard PG, Edirisinghe D, Khoo SH, Back DJ: Intracellular and plasma pharmacokinetics of efavirenz in HIV-infected individuals. J Antimicrob Chemother 2005, 56: 738–744. 10.1093/jac/dki308
Awofisayo S, Ekpo K, Umoren F, Uwanta E: The effct of food on the disintegration time and dissolution profile of arthemether-lumefantrine tablet. International Journal of Biomedical and Advance Research 2012, 03: 686–689.
Belanger AS, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C: Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab Dispos 2009, 37: 1793–1796. 10.1124/dmd.109.027706
Best BM, Goicoechea M: Efavirenz–still first-line king? Expert Opin Drug Metab Toxicol 2008, 4: 965–972. 10.1517/17425255.4.7.965
Bosgra S, van Eijkeren J, Bos P, Zeilmaker M, Slob W: An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol 2012, 42: 751–767. 10.3109/10408444.2012.709225
Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, Katabira E, Ntale M, Pakker N, Ryan M, Hanpithakpong W, Tarning J, Lindegardh N, de Vries PJ, Khoo S, Back D, Merry C: Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemoth 2012, 67: 2213–2221. 10.1093/jac/dks207
Crewe HK, Barter ZE, Yeo KR, Rostami-Hodjegan A: Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors. Biopharm Drug Dispos 2011, 32: 303–318. 10.1002/bdd.760
DRUGBANK (2999a): Artemether. DB06697. http://www.drugbank.ca/drugs/DB06697
DRUGBANK (2999b): Efavirenz. DB00625. http://www.drugbank.ca/drugs/DB00625
Esteban J, Pellin Mde L, Gimeno C, Barril J, Gimenez J, Mora E, Garcia-Perez AG: Increase of R-/S-methadone enantiomer concentration ratio in serum of patients treated with either nevirapine or efavirenz. Drug Metab Lett 2008, 2: 269–279. 10.2174/187231208786734067
Faucette SR, Zhang TC, Moore R, Sueyoshi T, Omiecinski CJ, LeCluyse EL, Negishi M, Wang H: Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther 2007, 320: 72–80.
Gertz M, Harrison A, Houston JB, Galetin A: Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos 2010, 38: 1147–1158. 10.1124/dmd.110.032649
Gonzalez R, Ataide R, Naniche D, Menendez C, Mayor A: HIV and malaria interactions: where do we stand? Expert Rev Anti Infect Ther 2012, 10: 153–165. 10.1586/eri.11.167
Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC: Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 2012, 84: 98–105. 10.1021/ac201704a
Honda M, Muroi Y, Tamaki Y, Saigusa D, Suzuki N, Tomioka Y, Matsubara Y, Oda A, Hirasawa N, Hiratsuka M: Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether. Drug Metab Dispos 2011, 39: 1860–1865. 10.1124/dmd.111.040352
Houston JB: Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994, 47: 1469–1479. 10.1016/0006-2952(94)90520-7
Huang LS, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G, Havlir D, Aweeka FT: Concomitant Efavirenz Reduces Pharmacokinetic Exposure to the Antimalarial Drug Artemether-Lumefantrine in Healthy Volunteers. Jaids-J Acq Imm Def 2012, 61: 310–316. 10.1097/QAI.0b013e31826ebb5c
Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, le Thu TA, Hung NC, Pirmohamed M, Park BK, Edwards G: Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 2002, 30: 1005–1012. 10.1124/dmd.30.9.1005
International Life Sciences Institute: Physiological parameter values for PBPK models. 1994.
Jones HM, Parrott N, Jorga K, Lave T: A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 2006, 45: 511–542. 10.2165/00003088-200645050-00006
Kimura T, Iwasaki N, Yokoe JI, Haruta S, Yokoo Y, Ogawara KI, Higaki K: Analysis and prediction of absorption profile including hepatic first-pass metabolism of N-methyltyramine, a potent stimulant of gastrin release present in beer, after oral ingestion in rats by gastrointestinal-transit-absorption model. Drug Metab Dispos 2000, 28: 577–581.
Marzolini C, Elzi L, Gibbons S, Weber R, Fux C, Furrer H, Chave JP, Cavassini M, Bernasconi E, Calmy A, Vernazza P, Khoo S, Ledergerber B, Back D, Battegay M: Prevalence of comedications and effect of potential drug-drug interactions in the Swiss HIV Cohort Study. Antivir Ther 2010, 15: 413–423. 10.3851/IMP1540
Mouly S, Lown KS, Kornhauser D, Joseph JL, Fiske WD, Benedek IH, Watkins PB: Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 2002, 72: 1–9. 10.1067/mcp.2002.124519
Obach RS: Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 1999, 27: 1350–1359.
Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z: Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos 2010, 38: 1218–1229. 10.1124/dmd.109.031393
Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T: Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 2012, 40: 83–92. 10.1124/dmd.111.042259
Poulin P, Haddad S: Microsome composition-based model as a mechanistic tool to predict nonspecific binding of drugs in liver microsomes. J Pharm Sci-Us 2011, 100: 4501–4517. 10.1002/jps.22619
Poulin P, Theil FP: Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 2002, 91: 129–156. 10.1002/jps.10005
Proctor NJ, Tucker GT, Rostami-Hodjegan A: Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica 2004, 34: 151–178. 10.1080/00498250310001646353
Rekic D, Roshammar D, Mukonzo J, Ashton M: In silico prediction of efavirenz and rifampicin drug-drug interaction considering weight and CYP2B6 phenotype. Br J Clin Pharmacol 2011, 71: 536–543. 10.1111/j.1365-2125.2010.03883.x
Siccardi M, Almond L, Schipani A, Csajka C, Marzolini C, Wyen C, Brockmeyer NH, Boffito M, Owen A, Back D: Pharmacokinetic and pharmacodynamic analysis of efavirenz dose reduction using an in vitro-in vivo extrapolation model. Clin Pharmacol Ther 2012, 92: 494–502. 10.1038/clpt.2012.61
Takano R, Sugano K, Higashida A, Hayashi Y, Machida M, Aso Y, Yamashita S: Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res 2006, 23: 1144–1156. 10.1007/s11095-006-0162-4
UNAIDS: Global report. UNAIDS report on the global AIDS epidemics. Date accessed: 04/04/2011. 2010. http://www.unaids.org/globalreport/documents/20101123_GlobalReport_full_en.pdf
Vella S, Schwartlander B, Sow SP, Eholie SP, Murphy RL: The history of antiretroviral therapy and of its implementation in resource-limited areas of the world. AIDS 2012, 26: 1231–1241. 10.1097/QAD.0b013e32835521a3
Vrouenraets SM, Wit FW, van Tongeren J, Lange JM: Efavirenz: a review. Expert Opin Pharmacother 2007, 8: 851–871. 10.1517/14656566.8.6.851
Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z: The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 2003, 306: 287–300. 10.1124/jpet.103.049601
Weiss J, Herzog M, Konig S, Storch CH, Ketabi-Kiyanvash N, Haefeli WE: Induction of multiple drug transporters by efavirenz. J Pharmacol Sci 2009, 109: 242–250. 10.1254/jphs.08209FP
White NJ, van Vugt M, Ezzet F: Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet 1999, 37: 105–125. 10.2165/00003088-199937020-00002
WHO: Malaria and HIV/AIDS interactions and their implications for public health policy. 2005. . Accessed December 16, 2012 http://whqlibdoc.who.int/publications/2005/9241593350.pdf . Accessed December 16, 2012
WHO: World Malaria Report. 2012. . Accessed assessed December 19, 2012 http://www.who.int/malaria/publications/world_malaria_report_2012/wmr2012_full_report.pdf . Accessed assessed December 19, 2012