Use of a beta microprobe system to measure arterial input function in PET via an arteriovenous shunt in rats

Springer Science and Business Media LLC - Tập 1 - Trang 1-11 - 2011
Geoff Warnock1, Mohamed-Ali Bahri1, David Goblet1, Fabrice Giacomelli1, Christian Lemaire1, Joel Aerts1, Alain Seret2, Xavier Langlois3, Andre Luxen1, Alain Plenevaux1
1Cyclotron Research Center (B30), University of Liège, Liège, Belgium
2Imagerie médicale expérimentale, Université de Liège, Liège, Belgium
3Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium

Tóm tắt

Kinetic modeling of physiological function using imaging techniques requires the accurate measurement of the time-activity curve of the tracer in plasma, known as the arterial input function (IF). The measurement of IF can be achieved through manual blood sampling, the use of small counting systems such as beta microprobes, or by derivation from PET images. Previous studies using beta microprobe systems to continuously measure IF have suffered from high background counts. In the present study, a light-insensitive beta microprobe with a temporal resolution of up to 1 s was used in combination with a pump-driven femoral arteriovenous shunt to measure IF in rats. The shunt apparatus was designed such that the placement of the beta microprobe was highly reproducible. The probe-derived IF was compared to that obtained from manual sampling at 5-s intervals and IF derived from a left ventricle VOI in a dynamic PET image of the heart. Probe-derived IFs were very well matched to that obtained by "gold standard" manual blood sampling, but with an increased temporal resolution of up to 1 s. The area under the curve (AUC) ratio between probe- and manually derived IFs was 1.07 ± 0.05 with a coefficient of variation of 0.04. However, image-derived IFs were significantly underestimated compared to the manually sampled IFs, with an AUC ratio of 0.76 ± 0.24 with a coefficient of variation of 0.32. IF derived from the beta microprobe accurately represented the IF as measured by blood sampling, was reproducible, and was more accurate than an image-derived technique. The use of the shunt removed problems of tissue-background activity, and the use of a light-tight probe with minimal gamma sensitivity refined the system. The probe/shunt apparatus can be used in both microprobe and PET studies.

Tài liệu tham khảo

Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C: A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 2001, 21: 15–23. 10.1002/jat.727 Sharp TL, Dence CS, Engelbach JA, Herrero P, Gropler RJ, Welch MJ: Techniques necessary for multiple tracer quantitative small-animal imaging studies. Nucl Med Biol 2005, 32: 875–884. 10.1016/j.nucmedbio.2005.05.010 Wu HM, Sui G, Lee CC, Prins ML, Ladno W, Lin HD, Yu AS, Phelps ME, Huang SC: In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. J Nucl Med 2007, 48: 837–845. 10.2967/jnumed.106.038182 Kudomi N, Choi E, Yamamoto S, Watabe H, Min Kim K, Shidahara M, Ogawa M, Teramoto N, Sakamoto E, H I: Development of a GSO Detector Assembly for a Continuous Blood Sampling System. IEEE Trans Nucl Sci 2003, 50: 70–73. 10.1109/TNS.2002.807869 Lapointe D, Cadorette J, Rodrigue S, Rouleau D, R L: A microvolumetric blood counter/sampler for metabolic PET studies in small animals. IEEE Trans Nucl Sci 1998, 45: 2195–2199. 10.1109/23.708343 Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA: Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001, 28: 81–89. 10.1007/s002590000405 Convert L, Morin-Brassard G, Cadorette J, Archambault M, Bentourkia M, Lecomte R: A new tool for molecular imaging: the microvolumetric beta blood counter. J Nucl Med 2007, 48: 1197–1206. 10.2967/jnumed.107.042606 Reymond J-M, Guez D, Kerhoas S, Mangeot P, Boisgard R, Jan S, Tavitian B, Trebossen R: Development of an instrument for time-activity curve measurements during PET imaging of rodents. Nuc Instr Methods Phys Res A 2007, 571: 358–361. 10.1016/j.nima.2006.11.019 Maramraju S, Stoll S, Woody C, Schlyer D, Schiffer W, Lee D, Dewey S, P V: A LSO [beta] microprobe for measuring input functions for quantitative small animal PET. Nuc Instr Methods Phys Res A 2007, 571: 407–410. 10.1016/j.nima.2006.10.121 Laforest R, Sharp TL, Engelbach JA, Fettig NM, Herrero P, Kim J, Lewis JS, Rowland DJ, Tai YC, Welch MJ: Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 2005, 32: 679–685. 10.1016/j.nucmedbio.2005.06.012 Lee K, Fox PT, Lancaster JL, Jerabek PA: A positron-probe system for arterial input function quantification for positron emission tomography in humans. Rev Sci Instrum 2008, 79: 064301. 10.1063/1.2936880 Pain F, Laniece P, Mastrippolito R, Gervais P, Hantraye P, Besret L: Arterial input function measurement without blood sampling using a beta-microprobe in rats. J Nucl Med 2004, 45: 1577–1582. Seki C, Okada H, Mori S, Kakiuchi T, Yoshikawa E, Nishiyama S, Tsukada H, Yamashita T: Application of a beta microprobe for quantification of regional cerebral blood flow with (15)O-water and PET in rhesus monkeys. Ann Nucl Med 1998, 12: 7–14. 10.1007/BF03165410 Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, Shin SA, Chung JK, Lee MC: Quantification of regional myocardial blood flow using dynamic H2(15)O PET and factor analysis. J Nucl Med 2001, 42: 782–787. Hermansen F, Ashburner J, Spinks TJ, Kooner JS, Camici PG, Lammertsma AA: Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med 1998, 39: 1696–1702. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, Jones T: Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992, 33: 1669–1677. Kim J, Herrero P, Sharp T, Laforest R, Rowland DJ, Tai YC, Lewis JS, Welch MJ: Minimally invasive method of determining blood input function from PET images in rodents. J Nucl Med 2006, 47: 330–336. Mourik JE, Lubberink M, Schuitemaker A, Tolboom N, van Berckel BN, Lammertsma AA, Boellaard R: Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging 2009, 36: 463–471. 10.1007/s00259-008-0986-8 Su Y, Welch MJ, Shoghi KI: The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data. Phys Med Biol 2007, 52: 2313–2334. 10.1088/0031-9155/52/8/018 Tantawy MN, Peterson TE: Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Mol Imaging 2010, 9: 76–86. Weinberg IN, Huang SC, Hoffman EJ, Araujo L, Nienaber C, Grover-McKay M, Dahlbom M, Schelbert H: Validation of PET-acquired input functions for cardiac studies. J Nucl Med 1988, 29: 241–247. Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, Huang SC: Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995, 36: 1714–1722. Wu HM, Huang SC, Allada V, Wolfenden PJ, Schelbert HR, Phelps ME, Hoh CK: Derivation of input function from FDG-PET studies in small hearts. J Nucl Med 1996, 37: 1717–1722. Huang SC, Wu HM, Shoghi-Jadid K, Stout DB, Chatziioannou A, Schelbert HR, Barrio JR: Investigation of a new input function validation approach for dynamic mouse microPET studies. Mol Imaging Biol 2004, 6: 34–46. 10.1016/j.mibio.2003.12.002 Meyer PT, Circiumaru V, Cardi CA, Thomas DH, Bal H, Acton PD: Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function. Eur J Nucl Med Mol Imaging 2006, 33: 948–954. 10.1007/s00259-006-0121-7 Ferl GZ, Zhang X, Wu HM, Huang SC: Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med 2007, 48: 2037–2045. 10.2967/jnumed.107.041061 Shoghi KI, Welch MJ: Hybrid image and blood sampling input function for quantification of small animal dynamic PET data. Nucl Med Biol 2007, 34: 989–994. 10.1016/j.nucmedbio.2007.07.010 Weber B, Burger C, Biro P, Buck A: A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals. Eur J Nucl Med Mol Imaging 2002, 29: 319–323. 10.1007/s00259-001-0712-2 Ashworth S, Ranciar A, Bloomfield PM: Development of an on-line blood detector system for PET studies in small animals. In Quantification of brain function using PET. Edited by: al Me. San Diego: Academic Press; 1996:62–66. Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widen L: Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 1991, 11: 926–931. 10.1038/jcbfm.1991.157 Weber B, Spath N, Wyss M, Wild D, Burger C, Stanley R, Buck A: Quantitative cerebral blood flow measurements in the rat using a beta-probe and H2 15O. J Cereb Blood Flow Metab 2003, 23: 1455–1460. Pain F, Dhenain M, Gurden H, Routier AL, Lefebvre F, Mastrippolito R, Laniece P: A method based on Monte Carlo simulations and voxelized anatomical atlases to evaluate and correct uncertainties on radiotracer accumulation quantitation in beta microprobe studies in the rat brain. Phys Med Biol 2008, 53: 5385–5404. 10.1088/0031-9155/53/19/008 Bahri MA, Plenevaux A, Warnock G, Luxen A, Seret A: NEMA NU4–2008 image quality performance report for the microPET focus 120 and for various transmission and reconstruction methods. J Nucl Med 2009, 50: 1730–1738. 10.2967/jnumed.109.063974 Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, Moon DH: Performance measurement of the microPET focus 120 scanner. J Nucl Med 2007, 48: 1527–1535. 10.2967/jnumed.107.040550 Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, Laforest R: Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 2005, 46: 455–463. Fang YH, Muzic RF Jr: Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 2008, 49: 606–614. 10.2967/jnumed.107.047613 Su KH, Lee JS, Li JH, Yang YW, Liu RS, Chen JC: Partial volume correction of the microPET blood input function using ensemble learning independent component analysis. Phys Med Biol 2009, 54: 1823–1846. 10.1088/0031-9155/54/6/026 Zanotti-Fregonara P, Fadaili el M, Maroy R, Comtat C, Souloumiac A, Jan S, Ribeiro MJ, Gaura V, Bar-Hen A, Trebossen R: Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J Cereb Blood Flow Metab 2009, 29: 1825–1835. 10.1038/jcbfm.2009.93 Votaw JR, Shulman SD: Performance evaluation of the Pico-Count flow-through detector for use in cerebral blood flow PET studies. J Nucl Med 1998, 39: 509–515. Ludemann L, Sreenivasa G, Michel R, Rosner C, Plotkin M, Felix R, Wust P, Amthauer H: Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction. Phys Med Biol 2006, 51: 2883–2900. 10.1088/0031-9155/51/11/014 Munk OL, Keiding S, Bass L: A method to estimate dispersion in sampling catheters and to calculate dispersion-free blood time-activity curves. Med Phys 2008, 35: 3471–3481. 10.1118/1.2948391 van den Hoff J, Burchert W, Muller-Schauenburg W, Meyer GJ, Hundeshagen H: Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 1993, 34: 1770–1777.