Sử dụng phương pháp thiết kế hỗn hợp để tối ưu hóa và nâng cao hiệu suất của hệ thống xi măng tứ thể tiết kiệm chi phí: Xi măng Portland–Tro bay–Khói silic–Phosphogypsum

Chemistry Africa - Tập 4 - Trang 835-848 - 2021
Khaoula Mkadmini Hammi1, Halim Hammi1, Ahmed Hichem Hamzaoui1
1Useful Materials Valorization Laboratory, National Centre of Research in Materials Science, Technologic Park of Borj Cedria, Soliman, Tunisia

Tóm tắt

Nghiên cứu hiện tại đã điều tra tác động của việc thay thế một phần xi măng Portland bằng các phụ gia khoáng chất bao gồm khói silic, tro bay và phosphogypsum tinh khiết với các tỷ lệ khác nhau đến các tính chất cơ học của vữa như cường độ nén và cường độ uốn, cũng như thời gian định hình ban đầu bằng cách tiếp cận thiết kế hỗn hợp. Nghiên cứu này nhằm mục đích bảo vệ môi trường khỏi ô nhiễm thông qua việc tái chế vật liệu chất thải rắn, đặc biệt là tro bay và phosphogypsum trong các công trình xây dựng xi măng, đồng thời cải thiện cường độ cơ học của xi măng Portland thường và gia tốc thời gian định hình ban đầu cho các ứng dụng cụ thể. Dựa trên phương pháp bề mặt phản hồi, một sự thỏa hiệp giữa thời gian định hình, cường độ nén và cường độ uốn đã được tìm thấy thành công và tỷ lệ tối ưu của các thành phần khác nhau như sau: 85,3% xi măng, 3% phosphogypsum tinh khiết, 6,7% khói silic và 5% tro bay. Các điều kiện này cho phép phát triển xi măng với thời gian định hình ban đầu là 111,2 phút, cường độ nén là 49,54 MPa và cường độ uốn là 18,85 MPa, cao hơn so với xi măng Portland thông thường. Thú vị thay, sự phát triển của cường độ nén theo độ tuổi bảo dưỡng với sự bổ sung các pozzolan chỉ ra rằng sự kết hợp các pozzolan tăng cường cường độ sau 28 ngày một cách đáng kể so với xi măng tham khảo. Hành vi này được quan sát thông qua kính hiển vi điện tử quét.

Từ khóa

#xi măng #phụ gia khoáng #khói silic #tro bay #phosphogypsum #cường độ nén #cường độ uốn #thời gian định hình

Tài liệu tham khảo

Toutanji H, Delatte N, Aggoun S, Duval R, Danson A (2004) Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cem ConcrRes 34(2):311–319 Gesoglu M, Guneyisi E, Ozbay E (2009) Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Constr Build Mater 23(5):1847–1854 Abolhasani A, Nazarpour H, Dehestani M (2021) Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete. Eng Fract Mech 242:107446 Park J, Tae S, Kim T (2012) Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea. Renew Sust Energ Rev 16(5):2940–2946 Paris JM, Roessler JG, Ferraro CC, DeFord HD, Townsend TG (2016) A review of waste products utilized as supplements to Portland cement in concrete. J Clean Prod 121:1–18 Adil G, Kevern JT, Mann D (2020) Influence of silica fume on mechanical and durability of pervious concrete. Constr Build Mater 247:118453 Jagan S, Neelakan TR (2021) Effect of silica fume on the hardened and durability properties of concrete. Int J Appl Sci Eng 12(1):44–49 Golewski GL (2021) The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading. Energies 14(3):668 Huseien GH, Sam ARM, Algaifi HA, Alyousef R (2021) Development of a sustainable concrete incorporated with effective microorganism and fly ash: characteristics and modeling studies. Constr Build Mater 285:122899 Girao AV, Richardson IG, Taylor R, Brydson RDM (2010) RMD Composition, morphology and nanostructure of C-S–H in 70 % white Portland cement-30% fly ash blends hydrated at 55 °C. Cem Concr Res 40(9):1350–1359 Abolhasani A, Aslani F, Samali B, Ghaffar SH, Fallahnejad H, Banihashemi S (2021) Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment. Adv Appl Ceram 120(2):104–116 Abolhasani A, Nazarpour H, Dehestani M (2020) The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios. Theor Appl Fract Mech 109:102690 Singh NB, Kalra M, Kumar M, Rai S (2015) Hydration of ternary cementitious system: Portland cement, fly ash and silica fume. J Therm Anal Calorim 119:381–389 Mohamed HA (2011) Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions. Ain Shams Eng J 2(2):79–86 Singh M (2002) Treating waste phosphogypsum for cement and plaster manufacture. Cem Concr Res 32(7):1033–1038 Singh M, Garg M, Rehsi SS (1992) Purifying phosphogypsum for cement manufacture. Constr Build Mater 7(1):3–7 Liu L, Zhang Y, Tan K (2015) Cementitious binder of phosphogypsum and other materials. Adv Cem Res 27(10):567–570 EN B 2005 196-1 (2005) Methods of testing cement. Determination of strength. EN T 2000 196-3 (2000) Methods of testing cement—part 3: determination of setting times and soundness. Montgomery DC (1996) Design and analysis of experiments. John Wiley & Sons, Mishawaka, IN, USA Mathieu D, Phan Tan Luu R (1999) Nemrod-W software. Aix-Marseille III University, Aix-en-Provence, France Shen W, Gan G, Dong R, Chen H, Tan Y, Zhou M (2012) Utilization of solidified phosphogypsum as Portland cement retarder. J Mater Cycles Waste Manag 14:228–233 Altun A, Sert Y (2004) Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem Concr Res 34(4):677–680 Fajun W, Grutzeck MW, Roy DM (1985) The retarding effects of fly ash upon the hydration of cement pastes: the first 24 hours. Cem Concr Res 15(1):174–184 Ogawa G, Uchikawa H, Takemoto K, Yasui I (1980) The mechanism of the hydration in the system C3S-pozzolana. Cem Concr Res 10(5):683–696 Yuan HJ, Scheetz BE, Roy DM (1984) Hydration of fly ash-portland cements. Cem Concr Res 14(4):505–512 Jeong Y, Kang SH, Kim MO, Moon J (2020) Acceleration of cement hydration by hydrophobic effect 1 from supplementary cementitious materials: performance comparison between silica fume and hydrophobic silica. Cem Concr Compos 112:103688 Sounthararajan VM, Srinivasan K, Sivakumar A (2013) Micro filler effects of silica-fume on the setting and hardened properties of concrete. Res J Appl Sci Eng Tech 6(14):2649–2654 Brooks JJ, Megat Johari MA, Mazloom M (2000) Effect of admixtures on the setting times of high strength concrete. Cem Concr Compos 22(4):293–301 Sellevold EJ, Nilsen T (1987) Condensed silica fume in concrete: a world review. In: Malhotra VM (ed) Supplementary cementing materials for concrete. CANMET, Ottawa, Canada, pp 165–243 Mostafa NY, Brown PW (2005) Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry. Thermochim Acta 435(2):162–167 Barbhuiya SA, Russell MI, Basheer PAM (2009) Properties of fly ash concrete modified with hydrated lime and silica fume. Constr Build Mater 23(10):3233–3239 Ambalavanan R, Roja A (1996) A Feasibility study on utilization of waste lime and gypsum with fly ash’. Indian Concr J 70(11):611–616 Malhotra VM, Zhang MH, Read PH, Ryell J (2000) Long-term mechanical properties and durability characteristics of high-strength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions. ACI J Mater 97(5):518–525 Blenszynski R, Hooton RD, Thomas MDA, Rogers CA (2002) Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies. ACI J Mater 99(5):499–508 Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256 Jeong Y, Park H, Jun Y, Jeong J-H, Oh JE (2015) Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Constr Build Mater 95:96–107 Fernández Á, GarcíaCalvo JL, Alonso MC (2018) Ordinary Portland cement composition for the optimization of the synergies of supplementary cementitious materials of ternary binders in hydration processes. Cem Concr Compos 89:238–250 Gafoori N, Diawara H (2007) Strength and wear resistance of sand—replaced silica fume concrete. ACI J Mater 104(2):206–214 Yogendran Y, Langan BW, Haque MN, Ward MA (1987) Silica fume in high strength concrete. ACI J Mater 84(2):124–129 Khayat KH, Vachon M, Lanctot MC (1997) Use of blended silica fume cement in commercial concrete mixtures. ACI J Mater 94(3):183–192 Srivastava V, Kumar R, Agarwal VC, Mehta PK (2014) Effect of silica fume on workability and compressive strength of OPC concrete. J Environ Nanotechnol 3(3):32–35 Popovics S (1993) Portland Cement–fly ash–silica fume systems in concrete. Adv Cem Based Mater 1:83–91 ELKhadiri I, Diouri A, Boukhari A, Aride J, Puertas F (2002) Mechanical behaviour of various mortars made by combined fly ash and limestone in moroccan Portland cement. Cem Concr Res 32(10):1597–1603 Khan MI, Lynsdale CJ (2002) Strength, permeability and carbonation of high performance concrete. Cem Concr Res 32(1):123–131 Thanongsak N, Watcharapong W, Arnon C (2010) Utilization of fly ash with silica fuma and properties of Portland cement fly ash–silica fume concrete. Fuel 89(3):768–774 Singh M, Garg M (1992) Phosphogypsum–fly ash cementitious binder—its hydration and strength development central. Cem Concr Res 25(4):752–785 Burgos-Montes O, Alonso MM, Puertas F (2013) Viscosity and water demand of limestone- and fly ash-blended cement pastes in the presence of superplasticisers. Constr Build Mater 48:417–423 Sathawane SH, Vairagade VS, Kene KS (2013) Combine effect of rice husk ash and fly ash on concrete by 30% cement replacement. Procedia Eng 51:35–44 Sargent P (2015) Handbook of Alkali-Activated Cements, Mortars and Concretes. The development of alkali-activated mixtures for soil stabilisation. Woodhead Publishing, Sawston, Cambridge, pp 555–604 Yun H, Zongshou L (2011) A binder of phosphogypsum-ground granulated blast furnace slag-ordinary Portland cement. J Wuhan Univ Technol Mater Sci Ed 26(3):548–551