Use of Alternating-Current Plasma Torch for Processing Potentially Hazardous Substances

High Energy Chemistry - Tập 52 - Trang 319-323 - 2018
A. A. Safronov1, O. B. Vasil’eva1, Yu. D. Dudnik1, V. E. Kuznetsov1, V. N. Shiryaev1, D. I. Subbotin1,2,3, N. V. Obraztsov1,4, A. V. Surov1, V. E. Popov1
1Institute of Electrophysics and Electrical Power Engineering, Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
3Saint-Petersburg State University, St. Petersburg, Russia
4Peter the Great Polytechnic University of St. Petersburg, St. Petersburg, Russia

Tóm tắt

The decomposition of tetrachloromethane and tetrafluoromethane by air plasma in the presence of methane has been studied using an ac plasma torch of up to 500 kW power with rail electrodes. Methane reacts with air in the partial oxidation mode to form hydrogen, which reacts with a halogen to produce the hydrogen halide.

Tài liệu tham khảo

Klusmeier, W., Vögler, P., Ohrbach, K.-H., Weber, H., and Kettrup, A., J. Anal. Appl. Pyrolysis, 1988, vol. 14, no. 1, p. 25. Bonarowska, M., Kaszkur, Z., Kępiński, L., and Karpiński, Z., Appl. Catal., B, 2010, vol. 99, no. 1, p. 248. Marrone, Ph.A., J. Supercrit. Fluids, 2013, vol. 79, p. 283. Kawamoto, K. and Miyata, H., Environ. Sci. Pollut. Res., 2015, vol. 22, no. 19, p. 14621. Narengerile Saito, H., and Watanabe, T., Thin Solid Films, 2009, vol. 518, no. 3, p. 929. Kim, T.-H., Choi, S., and Park, D.-W., Curr. Appl. Phys., 2012, vol. 12, no. 2, p. 509. Kirkpatrick, M.J., Finney, W.C., and Locke, B.R., Plasmas Polym., 2003, vol. 8, p. 165. Gandhi, M.S. and Mok, Y.S., J. Environ. Sci., 2012, vol. 24, no. 7, p. 1234. Indarto, A., Choi, J., Lee, H., and Song, H., J. Environ. Sci., 2006, vol. 18, p. 83. Penetrante, B., Hsiao, M., Bardsley, J., Merritt, B., Vogtlin, G., Kuthi, A., Burkhart, C., and Bayless, J., Plasma Sources Sci. Technol., 1997, vol. 6, p. 251. Jędrzejczyk, T., Kolaciński, Z., Koza, D., Raniszewski, G., Szymański, Ł., and Wiak, S., Open Chem., 2015, vol. 13, p. 156. Surov, A.V., Popov, S.D., Popov, V.E., Subbotin, D.I., Obraztsov, N.V., Kuchina, J.A., Serba, E.O., Nakonechny, Gh.V., Spodobin, V.A., Pavlov, A.V., and Nikonov, A.V., J. Phys.: Conf. Ser., 2017, vol. 825, no. 1, p. 012016. Safronov, A.A., Vasileva, O.B., Dudnik, Yu.D., Kuznetsov, V.E., Shiryaev, V.N., Subbotin, D.I., and Pavlov, A.V., J. Phys.: Conf. Ser., 2017, vol. 825, no. 1, p. 012013. Borovskoy, A.M., Popov, S.D., and Surov, A.V., J. Phys.: Conf. Ser., 2013, vol. 461, no. 1, p. 012033. Rutberg, Ph.G., Kuznetsov, V.A., Popov, V.E., Popov, S.D., Surov, A.V., Subbotin, D.I., and Bratsev, A.N., Appl. Energy, 2015, vol. 148, p. 159.