Sự tiếp xúc với các kim loại trong nước tiểu, arsenic và hydrocarbon thơm vòng (PAHs) và nguy cơ viêm phế quản mạn tính ở người trưởng thành tại Hoa Kỳ

Springer Science and Business Media LLC - Tập 29 - Trang 73480-73491 - 2022
Humairat H Rahman1, Danielle Niemann2, Stuart H. Munson-McGee3
1New Mexico State University, Las Cruces, USA
2Burrell College of Osteopathic Medicine, Las Cruces, USA
3Data Forward Analytics, LLC, PrincipalLas Cruces, USA

Tóm tắt

Kim loại, arsenic và hydrocarbon thơm vòng (PAHs) đều đã được liên kết với các bệnh hô hấp. Viêm phế quản mạn tính, một dạng của bệnh phổi tắc nghẽn mạn tính (COPD), là một vấn đề sức khỏe cộng đồng nghiêm trọng và là nguyên nhân gây bệnh tật và tử vong ở Hoa Kỳ. Mục tiêu của nghiên cứu này là phân tích mối tương quan giữa 14 kim loại trong nước tiểu (antimon, bari, cadmium, cesium, cobalt, chì, mangan, thủy ngân, molybdenum, strontium, thallium, thiếc, tungsten, uranium), bảy dạng arsenic và bảy dạng nồng độ hydrocarbon thơm vòng (PAH) với viêm phế quản mạn tính trong quần thể dân số Hoa Kỳ. Phân tích cắt ngang sử dụng ba bộ dữ liệu từ Khảo sát sức khỏe và dinh dưỡng quốc gia (NHANES) trong khoảng thời gian từ 2011 đến 2016 trên người trưởng thành từ 20 tuổi trở lên. Viêm phế quản mạn tính được xác định thông qua bảng hỏi tự đánh giá từ bộ dữ liệu NHANES. Một gói phần mềm phân tích thiết kế khảo sát phức tạp có trọng số chuyên dụng đã được sử dụng để phân tích dữ liệu NHANES. Các mô hình hồi quy logistic đa biến được sử dụng để xác định mối tương quan giữa các kim loại trong nước tiểu, arsenic, PAHs và viêm phế quản mạn tính. Các mô hình đã được điều chỉnh theo các yếu tố lối sống và dân số. Tổng cộng có 4186 người tham gia đã được phân tích; 49,8% là nữ và 40,5% là người da trắng không phải gốc Tây Ban Nha. Tất cả bảy loại PAHs đều cho thấy mối liên hệ tích cực với viêm phế quản mạn tính (tỷ lệ cược 1-hydroxy naphthalene (OR): 1.559, khoảng tin cậy (CI): 1.271–1.912; 2-hydroxy naphthalene OR: 2.498, 95% CI: 1.524–4.095; 3-hydroxy fluorene OR: 2.752, 95% CI: 2.100–3.608; 2-hydroxy fluorene OR: 3.461, 95% CI: 2.438–4.914; 1-hydroxy phenanthrene OR: 2.442, 95% CI: 1.515–3.937; 1-hydroxy pyrene OR: 2.828, 95% CI: 1.728–4.629; 2 & 3-hydroxy phenanthrene OR: 3.690, 95% CI: 2.309–5.896). Trong số các kim loại, chỉ có cadmium trong nước tiểu cho thấy mối liên hệ tích cực có ý nghĩa thống kê (OR: 2.435, 95% CI: 1.401–4.235) với viêm phế quản mạn tính. Không có kim loại hoặc arsenic nào khác có liên quan đến viêm phế quản mạn tính. Bảy dạng PAHs trong nước tiểu, cadmium và một số yếu tố dân số đã được liên kết với viêm phế quản mạn tính.

Từ khóa

#viêm phế quản mạn tính #kim loại #arsenic #hydrocarbon thơm vòng #sức khỏe cộng đồng #khảo sát NHANES

Tài liệu tham khảo

Ali MK, Kim RY, Karim R et al (2017) Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol 88:181–195. https://doi.org/10.1016/j.biocel.2017.05.003 Blanc PD, Torén K (2007) Occupation in chronic obstructive pulmonary disease and chronic bronchitis: an update. Int J Tuberc Lung Dis 11(3):251–257 Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Fulara I, Mielżyńska-Švach D (2017) Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens, Poland. Air Qual Atmos Health 10(3):389–400. https://doi.org/10.1007/s11869-016-0457-5 Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 Borgoño JM, Vicent P, Venturino H, Infante A (1977) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105. https://doi.org/10.1289/ehp.19-1637404 Cakmak S, Hebbern C, Cakmak JD, Dales RE (2017) The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population. Environ Pollut 228:1–7. https://doi.org/10.1016/j.envpol.2017.05.013 Cao X, Lin H, Muskhelishvili L, Latendresse J, Richter P, Heflich RH (2015) Tight junction disruption by cadmium in an in vitro human airway tissue model. Respir Res 16(1):30. https://doi.org/10.1186/s12931-015-0191-9 CDC/National Center for Health Statistics (2021). Chronic obstructive pulmonary disease (COPD) includes: chronic bronchitis and emphysema. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/fastats/copd.htm. Accessed 10 December 2021 CDC (2013a) Medical Conditions (MCQ_G). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/MCQ_G.htm. Accessed 12 December 2021 CDC (2013b) Metals - Urine (UHM_G). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UHM_G.htm. Accessed 12 December 2021 CDC (2013c) Mercury - Inorganic, Urine (UHG_G). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UHG_G.htm. Accessed 12 December 2021 CDC (2013d) Arsenics - Total & Speciated - Urine (UAS_G). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UAS_G.htm. Accessed 12 December 2021 CDC (2014) Polyaromatic Hydrocarbons (PAHs) - Urine (PAH_G). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/PAH_G.htm. Accessed 12 December 2021 CDC (2015) Medical Conditions (MCQ_H). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/MCQ_H.htm. Accessed 12 December 2021 CDC (2016a) Metals - Urine (UM_H). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UM_H.htm. Accessed 12 December 2021 CDC (2016b) Mercury - Urine (UHG_H). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UHG_H.htm. Accessed 12 December 2021 CDC (2016c) Arsenic - Total - Urine (UTAS_H). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UTAS_H.htm. Accessed 12 December 2021 CDC (2016d) Arsenics - Speciated - Urine (UAS_H). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UAS_H.htm. Accessed 12 December 2021 CDC (2016e) Polycyclic Aromatic Hydrocarbons (PAH) - Urine (PAH_H). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PAH_H.htm. Accessed 12 December 2021 CDC (2017a) Medical Conditions (MCQ_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/MCQ_I.htm. Accessed 12 December 2021 CDC (2017b) Albumin & Creatinine - Urine (ALB_CR_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALB_CR_I.htm. Accessed 12 December 2021 CDC (2017c) Body Measures (BMX_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BMX_I.htm. Accessed 12 December 2021 CDC (2017d) Demographic Variables and Sample Weights (DEMO_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.htm. Accessed 12 December 2021 CDC (2018a) Metals - Urine (UM_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UM_I.htm. Accessed 12 December 2021 CDC (2018b) Mercury - Urine (UHG_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UHG_I.htm. Accessed 12 December 2021 CDC (2018c) Arsenic - Total - Urine (UTAS_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UTAS_I.htm. Accessed 12 December 2021 CDC (2018d) Speciated Arsenics - Urine (UAS_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/UAS_I.htm. Accessed 12 December 2021 CDC (2018e) Alcohol Use (ALQ_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALQ_I.htm. Accessed 12 December 2021 CDC (2018f) MEC Laboratory Procedures Manual. National Center for Health Statistics. https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/manuals/2016_MEC_Laboratory_Procedures_Manual.pdf. Accessed 12 March 2022 CDC (2019) Cotinine and Hydroxycotinine - Serum (COT_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/COT_I.htm. Accessed 12 December 2021 CDC (2020a) About Adult BMI. https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html#trends. Accessed 12 December 2021 CDC (2020b) Polycyclic Aromatic Hydrocarbons (PAH) - Urine (PAH_I). National Center for Health Statistics. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PAH_I.htm. Accessed 12 December 2021 Chakraborti D, Rahman MM, Paul K et al (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58(1):3–22. https://doi.org/10.1016/s0039-9140(02)00270-9 Choudhury S, Gupta P, Ghosh S, Mukherjee S, Chakraborty P, Chatterji U et al (2016) Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses. Toxicology 357–358:85–96. https://doi.org/10.1016/j.tox.2016.06.005 Cohen MD (2004) Pulmonary immunotoxicology of select metals: aluminum, arsenic, cadmium, chromium, copper, manganese, nickel, vanadium, and zinc. J Immunotoxicol 1(1):39–69. https://doi.org/10.1080/15476910490438360 Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905 Drasch G, Schöpfer J, Schrauzer GN (2005) Selenium/cadmium ratios in human prostates: indicators of prostate cancer risk of smokers and nonsmokers, and relevance to the cancer protective effects of selenium. Biol Trace Elem Res 103(2):103–107. https://doi.org/10.1385/BTER:103:2:103 Eisner MD, Anthonisen N, Coultas D et al (2010) An official American thoracic society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182(5):693–718. https://doi.org/10.1164/rccm.200811-1757ST Ellison-Loschmann L, Sunyer J, Plana E et al (2007) Socioeconomic status, asthma and chronic bronchitis in a large community-based study. Eur Respir J 29(5):897–905. https://doi.org/10.1183/09031936.00101606 Farzan SF, Chen Y, Trachtman H, Trasande L (2016) Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents: NHANES 2003–2008. Environ Res 144(Pt A):149–157. https://doi.org/10.1016/j.envres.2015.11.012 Ganguly K, Levänen B, Palmberg L, Åkesson A, Lindén A (2018) Cadmium in tobacco smokers: a neglected link to lung disease? Eur Respir Rev 27(147):170122. https://doi.org/10.1183/16000617.0122-2017 GOLD (2021) Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease: 2022 report. Global Initiative for Chronic Obstructive Lung Disease (GOLD). https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf. Accessed 10 December 2021. Grasseschi RM, Ramaswamy RB, Levine DJ, Klaassen CD, Wesselius LJ (2003) Cadmium accumulation and detoxification by alveolar macrophages of cigarette smokers. Chest 124(5):1924–1928. https://doi.org/10.1378/chest.124.5.1924 Guerra S, Sherrill DL, Bobadilla A, Martinez FD, Barbee RA (2002) The relation of body mass index to asthma, chronic bronchitis, and emphysema. Chest 122(4):1256–1263. https://doi.org/10.1378/chest.122.4.1256 Guha Mazumder DN (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436–447 Guha Mazumder DN, Das Gupta J, Santra A, Pal A, Ghose A, Sarkar S (1998) Chronic arsenic toxicity in West Bengal - The worst calamity in the world. J Indian Med Assoc 96:4–7 Hamon R, Homan CC, Tran HB et al (2014) Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD. PLoS One 9(10):e110056. https://doi.org/10.1371/journal.pone.0110056 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans [IARC] (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Working Group views and expert opinions, Lyon, 9-16 February 1993. IARC MonogrEval Carcinog Risks Hum 58:1-415 IARC Working group on the evaluation of carcinogenic risks to humans [IARC] (2012) Arsenic, metals, fibres, and dusts. IARC MonogrEval Carcinog Risks Hum 100(Pt C):11-465 Jiang YL, Fei J, Cao P et al (2022) Serum cadmium positively correlates with inflammatory cytokines in patients with chronic obstructive pulmonary disease. Environ Toxicol 37(1):151–160. https://doi.org/10.1002/tox.23386 Kataria A, Trasande L, Trachtman H (2015) The effects of environmental chemicals on renal function. Nat Rev Nephrol 11(10):610–625. https://doi.org/10.1038/nrneph.2015.94 Kim V, Criner GJ (2013) Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187(3):228–237. https://doi.org/10.1164/rccm.201210-1843CI Kim V, Criner GJ (2015) The chronic bronchitis phenotype in chronic obstructive pulmonary disease: features and implications. Curr Opin Pulm Med 21(2):133–141. https://doi.org/10.1097/MCP.0000000000000145 Kim V, Davey A, Comellas AP et al (2014) Clinical and computed tomographic predictors of chronic bronchitis in COPD: a cross sectional analysis of the COPDGene study. Respir Res 15(1):52. https://doi.org/10.1186/1465-9921-15-52 Koller LD (1998) Cadmium. In: Zelikoff JT, Thomas PT (eds) Immunotoxicology of environmental and occupational metals. Taylor and Francis, London, UK, pp 41–61 Låg M, Rodionov D, Ovrevik J, Bakke O, Schwarze PE, Refsnes M (2010) Cadmium-induced inflammatory responses in cells relevant for lung toxicity: expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicol Lett 193(3):252–260. https://doi.org/10.1016/j.toxlet.2010.01.015 Lahousse L, Seys LJM, Joos GF, Franco OH, Stricker BH, Brusselle GG (2017) Epidemiology and impact of chronic bronchitis in chronic obstructive pulmonary disease. Eur Respir J 50(2):1602470. https://doi.org/10.1183/13993003.02470-2016 Lamprecht B, Soriano JB, Studnicka M et al (2015) Determinants of underdiagnosis of COPD in national and international surveys. Chest 148(4):971–985. https://doi.org/10.1378/chest.14-2535 Lantz RC, Chau B, Sarihan P, Witten ML, Pivniouk VI, Chen GJ (2009) In utero and postnatal exposure to arsenic alters pulmonary structure and function. Toxicol Appl Pharmacol 235(1):105–113. https://doi.org/10.1016/j.taap.2008.11.012 Lee DH, Jacobs DR (2009a) Is serum gamma-glutamyltransferase an exposure marker of xenobiotics? Empirical evidence with polycylic aromatic hydrocarbon. Clin Chem Lab Med 47(7):860–862. https://doi.org/10.1515/CCLM.2009.197 Lee DH, Jacobs DR Jr (2009b) Is serum gamma-glutamyltransferase a marker of exposure to various environmental pollutants? Free Radic Res 43(6):533–537. https://doi.org/10.1080/10715760902893324 Lee YJ, Kim JK, Lee JH, Lee HR, Kang DR, Shim JY (2008) Association of serum gamma-glutamyltransferase with C-reactive protein levels and white blood cell count in Korean adults. Clin Chem Lab Med 46(10):1410–1415. https://doi.org/10.1515/CCLM.2008.280 Lewis GP, Lyle H, Miller S (1969) Association between elevated hepatic water-soluble protein-bound cadmium levels and chronic bronchitis and/or emphysema. The Lancet 294(7634):1330–1333. https://doi.org/10.1016/S0140-6736(69)90866-6 Liu J, Man R, Ma S, Li J, Wu Q, Peng J (2015) Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar Pollut Bull 100(1):134–143. https://doi.org/10.1016/j.marpolbul.2015.09.014 Lumley T (2004) Analysis of complex survey samples. J Stat Softw 9(8) https://doi.org/10.18637/jss.v009.i08. Lumley T (2020) Package ‘survey’: analysis of complex survey samples, version 4.0. https://cran.r-project.org/web/packages/survey/survey.pdf. Accessed 12 December 2021 Lumley TS (2010) Complex surveys: a guide to analysis using R. John Wiley & Sons, Hoboken Mannino DM, Holguin F, Greves HM, Savage-Brown A, Stock AL, Jones RL (2004) Urinary cadmium levels predict lower lung function in current and former smokers: data from the Third National Health and Nutrition Examination Survey. Thorax 59(3):194–198. https://doi.org/10.1136/thorax.2003.012054 Martinez CH, Kim V, Chen Y et al (2014) The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respir Med 108(3):491–499. https://doi.org/10.1016/j.rmed.2013.11.003 Menezes AM, Victora CG, Rigatto M (1994) Prevalence and risk factors for chronic bronchitis in Pelotas, RS, Brazil: a population-based study. Thorax 49(12):1217–1221. https://doi.org/10.1136/thx.49.12.1217 Miller KA, Siscovick DS, Sheppard L et al (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356(5):447–458. https://doi.org/10.1056/NEJMoa054409 Mirza S, Clay RD, Koslow MA, Scanlon PD (2018) COPD guidelines: a review of the 2018 GOLD report. Mayo Clin Proc 93(10):1488–1502. https://doi.org/10.1016/j.mayocp.2018.05.026 National Center for Health Statistics (NCHS) (2017a) About the national health and nutrition examination survey. CDC. https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. Accessed 12 December 2021 National Center for Health Statistics (NCHS) (2017b) NCHS Research Ethics Review Board (ERB) Approval. https://www.cdc.gov/nchs/nhanes/irba98.htm. Accessed 12 December 2021 Ni H, Xu J (2016) COPD-related mortality by sex and race among adults aged 25 and over: United States, 2000–2014. NCHS Data Brief 256:1–8 Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S (2008) Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 295(2):L293-302. https://doi.org/10.1152/ajplung.00134 Perez-Padilla R, Schilmann A, Riojas-Rodriguez H (2010) Respiratory health effects of indoor air pollution. Int J Tuberc Lung Dis 14(9):1079–1086 Pérez-Rubio G, Falfán-Valencia R, Fernández-López JC et al (2021) Genetic factors associated with COPD depend on the ancestral Caucasian/Amerindian component in the Mexican population. Diagnostics (Basel) 11(4):599. https://doi.org/10.3390/diagnostics11040599 Pirkle JL (2018a) Laboratory procedure manual: antimony, arsenic, barium, beryllium, cadmium, cesium, cobalt, lead, manganese, molybdenum, platinum, strontium, thallium, tin, tungsten, and uranium. National Center for Environmental Health. https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/UTAS_UTASS_UM_UMS_I_MET.PDF. Accessed 12 March 2022. Pirkle JK (2018b) Laboratory procedure manual: polycyclic aromatic hydrocarbons (PAHs). National Center for Environmental Health. https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/PAH-I-PAHS-I-MET-508.pdf. Accessed 12 March 2022. Pope CA 3rd (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(Suppl 4):713–723. https://doi.org/10.1289/ehp.108-1637679 R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/. Accessed 21 December 2021 Rahman HH, Niemann D, Munson-McGee SH (2022a) Association among urinary polycyclic aromatic hydrocarbons and depression: a cross-sectional study from NHANES 2015–2016. Environ Sci Pollut Res Int 29(9):13089–13097. https://doi.org/10.1007/s11356-021-16692-3 Rahman HH, Niemann D, Munson-McGee SH (2021) Association of chronic kidney disease with exposure to polycyclic aromatic hydrocarbons in the US population [published online ahead of print, 2021 Nov 25]. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-17479-2 Rahman HH, Niemann D, Munson-McGee SH (2022b) Environmental exposure to metals and the risk of high blood pressure: a cross-sectional study from NHANES 2015–2016. Environ Sci Pollut Res Int 29(1):531–542. https://doi.org/10.1007/s11356-021-15726-0 Rahman HH, Niemann D, Munson-McGee SH (2021b) Association of environmental toxic metals with high sensitivity C-reactive protein: a cross-sectional study. Occup Dis Environ Med 9(4):173–184. https://doi.org/10.4236/odem.2021.94013 Rahman HH, Niemann D, Munson-McGee SH (2021) Association of albumin to creatinine ratio with urinary arsenic and metal exposure: evidence from NHANES 2015–2016 [published online ahead of print, 2021 Oct 13]. Int Urol Nephrol. https://doi.org/10.1007/s11255-021-03018-y Rahman HH, Niemann D, Singh D (2020a) Arsenic exposure and association with hepatitis E IgG antibodies. Occup Dis Environ Med 8:111–122. https://doi.org/10.4236/odem.2020.83009 Rahman HH, Niemann D, Yusuf KK (2022c) Association of urinary arsenic and sleep disorder in the US population: NHANES 2015–2016. Environ Sci Pollut Res Int 29(4):5496–5504. https://doi.org/10.1007/s11356-021-16085-6 Rahman HH, Yusuf KK, Niemann D, Dipon SR (2020b) Urinary speciated arsenic and depression among US adults. Environ Sci Pollut Res Int 27(18):23048–23053. https://doi.org/10.1007/s11356-020-08858-2 Richter P, Faroon O, Pappas RS (2017) Cadmium and cadmium/zinc ratios and tobacco-related morbidities. Int J Environ Res Public Health 14(10):1154. https://doi.org/10.3390/ijerph14101154 Sanchez TR, Powers M, Perzanowski M, George CM, Graziano JH, Navas-Acien A (2018) A meta-analysis of arsenic exposure and lung function: is there evidence of restrictive or obstructive lung disease? Curr Environ Health Rep 5(2):244–254. https://doi.org/10.1007/s40572-018-0192-1 Sarigiannis DA, Salifoglou A (2016) Research directives toward deciphering adverse outcome pathways induced by environmental metallotoxins. Curr Opin Chem Eng 13:161–169. https://doi.org/10.1016/j.coche.2016.09.010 Schwartz J (2001) Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 109(Suppl 3):405–409. https://doi.org/10.1289/ehp.01109s3405 Selman M, Pardo A (2012) Alveolar epithelial cell disintegrity and subsequent activation. Am J Respir Crit Care Med 186(2):119–121. https://doi.org/10.1164/rccm.201206-0997ED Shakir SK, Azizullah A, Murad W et al (2017) Toxic metal pollution in Pakistan and its possible risks to public health. Rev Environ Contam Toxicol 242:1–60. https://doi.org/10.1007/398_2016_9 Shin YH, Kim KE, Kim KE, Lee YJ (2015) Relationship between serum γ-glutamyltransferase level and leukocyte count in Korean children and adolescents. Scand J Clin Lab Invest 75(2):177–182. https://doi.org/10.3109/00365513.2014.993693 Shiue I (2015) Urinary heavy metals, phthalates and polyaromatic hydrocarbons independent of health events are associated with adult depression: USA NHANES, 2011–2012. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-015-4944-2 Shiue I (2016) Urinary polyaromatic hydrocarbons are associated with adult emphysema, chronic bronchitis, asthma, and infections: US NHANES, 2011–2012. Environ Sci Pollut Res Int 23(24):25494–25500. https://doi.org/10.1007/s11356-016-7867-7 Skalny AV, Lima TRR, Ke T et al (2020) Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases [published correction appears in Food Chem Toxicol. 2021 Mar;149:111999]. Food Chem Toxicol 146:111809. https://doi.org/10.1016/j.fct.2020.111809 Smith AH, Marshall G, Yuan Y et al (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114(8):1293–1296. https://doi.org/10.1289/ehp.8832 Smith AH, Ercumen A, Yuan Y, Steinmaus CM (2009) Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J Expo Sci Environ Epidemiol 19(4):343–348. https://doi.org/10.1038/jes.2008.73 Stallings-Smith S, Mease A, Johnson TM, Arikawa AY (2018) Exploring the association between polycyclic aromatic hydrocarbons and diabetes among adults in the United States. Environ Res 166:588–594. https://doi.org/10.1016/j.envres.2018.06.041 Susmann H (2016) Package ‘RNHANES’: “facilitates analysis of CDC NHANES,” version 1.1.0. https://cran.r-project.org/web/packages/RNHANES/RNHANES.pdf. Accessed 12 December 2021 Vogelmeier CF, Criner GJ, Martinez FJ et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD Executive Summary. Am J Respir Crit Care Med 195(5):557–582. https://doi.org/10.1164/rccm.201701-0218PP Wang C, Wei Z, Han Z et al (2019a) Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice. Environ Pollut 254(Pt A):113021. https://doi.org/10.1016/j.envpol.2019.113021 Wang CK, Lee HL, Chang H, Tsai MH, Kuo YC, Lin P (2012) Enhancement between environmental tobacco smoke and arsenic on emphysema-like lesions in mice. J Hazard Mater 221–222:256–263. https://doi.org/10.1016/j.jhazmat.2012.04.042 Wang L, Hou J, Hu C et al (2019b) Mediating factors explaining the associations between polycyclic aromatic hydrocarbons exposure, low socioeconomic status and diabetes: a structural equation modeling approach. Sci Total Environ 648:1476–1483. https://doi.org/10.1016/j.scitotenv.2018.08.255 Wiwatanadate P, Liwsrisakun C (2011) Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. Int J Hyg Environ Health 214(3):251–257. https://doi.org/10.1016/j.ijheh.2011.03.003 Yang G, Sun T, Han YY et al (2019) Serum cadmium and lead, current wheeze, and lung function in a nationwide study of adults in the United States. J Allergy Clin Immunol Pract 7(8):2653-2660.e3. https://doi.org/10.1016/j.jaip.2019.05.029 Yin P, Zhang M, Li Y, Jiang Y, Zhao W (2011) Prevalence of COPD and its association with socioeconomic status in China: findings from China chronic disease risk factor surveillance 2007. BMC Public Health 11:586. https://doi.org/10.1186/1471-2458-11-586