Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection
Tóm tắt
Từ khóa
Tài liệu tham khảo
PD Cotter, 2003, Surviving the acid test: responses of gram-positive bacteria to low pH, Microbiology and molecular biology reviews: MMBR, 67, 429, 10.1128/MMBR.67.3.429-453.2003
M Carrel, 2015, USA300 Methicillin-Resistant <italic>Staphylococcus aureus</italic>, United States, 2000–2013, Emerging infectious diseases, 21, 1973, 10.3201/eid2111.150452
SK Fridkin, 2005, Methicillin-resistant <italic>Staphylococcus aureus</italic> disease in three communities, The New England journal of medicine, 352, 1436, 10.1056/NEJMoa043252
J Knox, 2015, <italic>Staphylococcus aureus</italic> infections: transmission within households and the community, Trends in microbiology, 23, 437, 10.1016/j.tim.2015.03.007
M Bassetti, 2014, European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant <italic>Staphylococcus aureus</italic> after more than 10 years of experience with linezolid, Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 20, 3, 10.1111/1469-0691.12463
R Dantes, 2013, National burden of invasive methicillin-resistant <italic>Staphylococcus aureus</italic> infections, United States, 2011, JAMA internal medicine, 173, 1970
VC Thomas, 2014, A central role for carbon-overflow pathways in the modulation of bacterial cell death, PLoS pathogens, 10, e1004205, 10.1371/journal.ppat.1004205
MO Clements, 1999, Characterization of the major superoxide dismutase of <italic>Staphylococcus aureus</italic> and its role in starvation survival, stress resistance, and pathogenicity, J Bacteriol, 181, 3898, 10.1128/JB.181.13.3898-3903.1999
PF Chan, 1998, The <italic>Staphylococcus aureus</italic> Alternative Sigma Factor ς(B) Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model, Journal of Bacteriology, 180, 6082, 10.1128/JB.180.23.6082-6089.1998
E Bore, 2007, Acid-shock responses in <italic>Staphylococcus aureus</italic> investigated by global gene expression analysis, Microbiology (Reading, England), 153, 2289, 10.1099/mic.0.2007/005942-0
B Weinrick, 2004, Effect of mild acid on gene expression in <italic>Staphylococcus aureus</italic>, Journal of Bacteriology, 186, 8407, 10.1128/JB.186.24.8407-8423.2004
A Resch, 2005, Differential gene expression profiling of <italic>Staphylococcus aureus</italic> cultivated under biofilm and planktonic conditions, Applied and Environmental Microbiology, 71, 2663, 10.1128/AEM.71.5.2663-2676.2005
R Gaupp, 2010, Advantage of Upregulation of Succinate Dehydrogenase in <italic>Staphylococcus aureus</italic> Biofilms, Journal of Bacteriology, 192, 2385, 10.1128/JB.01472-09
TJ Lasisi, 2016, Salivary creatinine and urea analysis in patients with chronic kidney disease: a case control study, BMC Nephrology, 17, 10, 10.1186/s12882-016-0222-x
NE Dixon, 1975, Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel?, Journal of the American Chemical Society, 97, 4131, 10.1021/ja00847a045
HL Mobley, 1995, Molecular biology of microbial ureases, Microbiological reviews, 59, 451, 10.1128/MMBR.59.3.451-480.1995
B. Krajewska, 2009, Functional, catalytic and kinetic properties: A review, Journal of Molecular Catalysis B: Enzymatic, 59, 9, 10.1016/j.molcatb.2009.01.003
K Stingl, 2002, Acid survival of <italic>Helicobacter pylori</italic>: how does urease activity trigger cytoplasmic pH homeostasis?, Trends Microbiol, 10, 70, 10.1016/S0966-842X(01)02287-9
AW Debowski, 2017, <italic>Helicobacter pylori</italic> gene silencing in vivo demonstrates urease is essential for chronic infection, PLoS Pathogens, 13, e1006464, 10.1371/journal.ppat.1006464
YY Chen, 2000, Dual functions of <italic>Streptococcus salivarius</italic> urease, J Bacteriol, 182, 4667, 10.1128/JB.182.16.4667-4669.2000
S Murchan, 2004, Emergence, Spread, and Characterization of Phage Variants of Epidemic Methicillin-Resistant <italic>Staphylococcus aureus</italic> 16 in England and Wales, Journal of Clinical Microbiology, 42, 5154, 10.1128/JCM.42.11.5154-5160.2004
A Resch, 2005, Differential gene expression profiling of <italic>Staphylococcus aureus</italic> cultivated under biofilm and planktonic conditions, Appl Environ Microbiol, 71, 2663, 10.1128/AEM.71.5.2663-2676.2005
JK Lindgren, 2014, Arginine deiminase in <italic>Staphylococcus epidermidis</italic> functions to augment biofilm maturation through pH homeostasis, Journal of Bacteriology, 196, 2277, 10.1128/JB.00051-14
K Seidl, 2009, Effect of a glucose impulse on the CcpA regulon in <italic>Staphylococcus aureus</italic>, BMC Microbiol, 9, 95, 10.1186/1471-2180-9-95
SY Queck, 2008, RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in <italic>Staphylococcus aureus</italic>, Molecular cell, 32, 150, 10.1016/j.molcel.2008.08.005
SC Huang, 2014, The pH-dependent expression of the urease operon in <italic>Streptococcus salivarius</italic> is mediated by CodY, Appl Environ Microbiol, 80, 5386, 10.1128/AEM.00755-14
MR Sadykov, 2011, CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis, Microbiology, 157, 3458, 10.1099/mic.0.051243-0
K Seidl, 2008, CcpA mediates the catabolite repression of tst in Staphylococcus aureus, Infection and immunity, 76, 5093, 10.1128/IAI.00724-08
K Seidl, 2008, Staphylococcus aureus CcpA affects biofilm formation, Infection and immunity, 76, 2044, 10.1128/IAI.00035-08
AS Nuxoll, 2012, CcpA Regulates Arginine Biosynthesis in <italic>Staphylococcus aureus</italic> through Repression of Proline Catabolism, PLOS Pathogens, 8, e1003033, 10.1371/journal.ppat.1003033
CR Halsey, 2017, Amino Acid Catabolism in <italic>Staphylococcus aureus</italic> and the Function of Carbon Catabolite Repression, mBio, 8, e01434, 10.1128/mBio.01434-16
C Li, 2010, CcpA mediates proline auxotrophy and is required for <italic>Staphylococcus aureus</italic> pathogenesis, J Bacteriol, 192, 3883, 10.1128/JB.00237-10
DE Townsend, 1996, Proline is biosynthesized from arginine in <italic>Staphylococcus aureus</italic>, Microbiology, 142, 1491, 10.1099/13500872-142-6-1491
M Hussain, 1991, A chemically defined medium for slime production by coagulase-negative staphylococci, Journal of medical microbiology, 34, 143, 10.1099/00222615-34-3-143
K Gunka, 2012, Control of glutamate homeostasis in <italic>Bacillus subtilis</italic>: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation, Mol Microbiol, 85, 213, 10.1111/j.1365-2958.2012.08105.x
F Bhinderwala, 2018, Expanding the Coverage of the Metabolome with Nitrogen-Based NMR, Analytical chemistry, 90, 4521, 10.1021/acs.analchem.7b04922
AL Byrd, 2018, The human skin microbiome, Nature Reviews Microbiology, 16, 143, 10.1038/nrmicro.2017.157
CT Huang, 2002, Uric acid and urea in human sweat, The Chinese journal of physiology, 45, 109
SM Ali, 2013, Skin pH: from basic science to basic skin care, Acta Dermato-Venereologica, 93, 261, 10.2340/00015555-1531
SY Alami, 1968, Pathogenicity of staphylococci: with special reference to the persistence of infection in mice, The American journal of pathology, 53, 577
MA McMahon, 2007, Environmental stress and antibiotic resistance in food-related pathogens, Appl Environ Microbiol, 73, 211, 10.1128/AEM.00578-06
D De Biase, 2015, The <italic>Escherichia coli</italic> Acid Stress Response and Its Significance for Pathogenesis, Advances in applied microbiology, 92, 49, 10.1016/bs.aambs.2015.03.002
N Desriac, 2013, <italic>Bacillus cereus</italic> cell response upon exposure to acid environment: toward the identification of potential biomarkers, Front Microbiol, 4, 284, 10.3389/fmicb.2013.00284
C Dunne, 2014, Factors that mediate colonization of the human stomach by <italic>Helicobacter pylori</italic>, World journal of gastroenterology, 20, 5610, 10.3748/wjg.v20.i19.5610
G Sachs, 2005, Acid acclimation by <italic>Helicobacter pylori</italic>, Physiology (Bethesda, Md), 20, 429
CL Williams, 1996, <italic>Helicobacter pylori</italic> utilises urea for amino acid synthesis, FEMS Immunol Med Microbiol, 13, 87, 10.1111/j.1574-695X.1996.tb00220.x
G Sachs, 1996, Acid, protons and <italic>Helicobacter pylori</italic>, The Yale journal of biology and medicine, 69, 301
HL Mobley, 1991, <italic>Helicobacter pylori</italic> urease: properties and role in pathogenesis, Scandinavian journal of gastroenterology Supplement, 187, 39, 10.3109/00365529109098223
A Gouzy, 2014, <italic>Mycobacterium tuberculosis</italic> exploits asparagine to assimilate nitrogen and resist acid stress during infection, PLoS Pathog, 10, e1003928, 10.1371/journal.ppat.1003928
W Lin, 2012, Urease activity represents an alternative pathway for <italic>Mycobacterium tuberculosis</italic> nitrogen metabolism, Infect Immun, 80, 2771, 10.1128/IAI.06195-11
L Xiong, 2016, Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy, International journal of molecular sciences, 17, 363, 10.3390/ijms17030363
JC Moran, 2017, Comparative Transcriptomics Reveals Discrete Survival Responses of <italic>S</italic>. <italic>aureus</italic> and <italic>S</italic>. <italic>epidermidis</italic> to Sapienic Acid, Front Microbiol, 8, 33, 10.3389/fmicb.2017.00033
KL Anderson, 2010, Characterizing the effects of inorganic acid and alkaline shock on the <italic>Staphylococcus aureus</italic> transcriptome and messenger RNA turnover, FEMS Immunol Med Microbiol, 60, 208, 10.1111/j.1574-695X.2010.00736.x
ZR Tranchemontagne, 2015, <italic>Staphylococcus aureus</italic> Strain USA300 Perturbs Acquisition of Lysosomal Enzymes and Requires Phagosomal Acidification for Survival inside Macrophages, Infection and immunity, 84, 241, 10.1128/IAI.00704-15
AR Richardson, 2015, Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria, Microbiology spectrum, 3
FE Rivera, 2012, The impact of CodY on virulence determinant production in community-associated methicillin-resistant <italic>Staphylococcus aureus</italic>, Proteomics, 12, 263, 10.1002/pmic.201100298
V Molle, 2003, Additional targets of the <italic>Bacillus subtilis</italic> global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis, Journal of Bacteriology, 185, 1911, 10.1128/JB.185.6.1911-1922.2003
LV Wray Jr., 1997, Expression of the <italic>Bacillus subtilis</italic> ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H, Journal of Bacteriology, 179, 5494, 10.1128/jb.179.17.5494-5501.1997
CD Majerczyk, 2010, Direct targets of CodY in <italic>Staphylococcus aureus</italic>, Journal of Bacteriology, 192, 2861, 10.1128/JB.00220-10
JM Voyich, 2009, The SaeR/S gene regulatory system is essential for innate immune evasion by <italic>Staphylococcus aureus</italic>, The Journal of infectious diseases, 199, 1698, 10.1086/598967
Q Lou, 2014, Two-component signal transduction system SaeRS positively regulates <italic>Staphylococcus epidermidis</italic> glucose metabolism, TheScientificWorldJournal, 2014, 908121
D Frees, 2012, New insights into <italic>Staphylococcus aureus</italic> stress tolerance and virulence regulation from an analysis of the role of the ClpP protease in the strains Newman, COL, and SA564, Journal of proteome research, 11, 95, 10.1021/pr200956s
A Michel, 2006, Global regulatory impact of ClpP protease of <italic>Staphylococcus aureus</italic> on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair, Journal of Bacteriology, 188, 5783, 10.1128/JB.00074-06
P Gao, 2018, Suppression of <italic>Staphylococcus aureus</italic> virulence by a small-molecule compound, Proc Natl Acad Sci U S A
TT Luong, 2006, Transcription Profiling of the mgrA Regulon in <italic>Staphylococcus aureus</italic>, J Bacteriol, 188, 1899, 10.1128/JB.188.5.1899-1910.2006
R SJ Dalal, 2018, StatPearls
AS Rocha, 1982, Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct, Kidney Int, 22, 485, 10.1038/ki.1982.201
U Kersting, 1994, Evidence for an acid pH in rat renal inner medulla: paired measurements with liquid ion-exchange microelectrodes on collecting ducts and vasa recta, Pflugers Archiv: European journal of physiology, 426, 354, 10.1007/BF00374794
EA Zalyapin, 2008, Effects of the renal medullary pH and ionic environment on vasopressin binding and signaling, Kidney international, 74, 1557, 10.1038/ki.2008.412
JM Smith, 1956, The behavior of virulent and avirulent staphylococci in the tissues of normal mice, The Journal of experimental medicine, 103, 87, 10.1084/jem.103.1.87
SJ Yanke, 2000, A CD-1 mouse model of infection with <italic>Staphylococcus aureus</italic>: influence of gender on infection with MRSA and MSSA isolates, Canadian journal of microbiology, 46, 920, 10.1139/w00-073
RS Flannagan, 2015, Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of <italic>Staphylococcus aureus</italic>, Pathogens (Basel, Switzerland), 4, 826
J Ni, 2017, A role for bacterial urease in gut dysbiosis and Crohn's disease, Science translational medicine, 9
J Horn, 2017, Inside job: <italic>Staphylococcus aureus</italic> host-pathogen interactions, Int J Med Microbiol
LR Thurlow, 2018, Peroxisome Proliferator-Activated Receptor gamma Is Essential for the Resolution of Staphylococcus aureus Skin Infections, Cell host & microbe, 24, 261, 10.1016/j.chom.2018.07.001
CN Krute, 2017, VfrB Is a Key Activator of the <italic>Staphylococcus aureus</italic> SaeRS Two-Component System, J Bacteriol, 199, 10.1128/JB.00828-16
S Lofdahl, 1981, Cloning of restriction fragments of DNA from staphylococcal bacteriophage φ11, Journal of Virology, 37, 795, 10.1128/JVI.37.2.795-801.1981
JL Bose, 2013, Genetic tools to enhance the study of gene function and regulation in <italic>Staphylococcus aureus</italic>, Applied and Environmental Microbiology, 79, 2218, 10.1128/AEM.00136-13
MK Lehman, 2016, Allelic Exchange, Methods in molecular biology (Clifton, NJ), 1373, 89, 10.1007/7651_2014_187
J Chen, 2014, Single-copy vectors for integration at the SaPI1 attachment site for Staphylococcus aureus, Plasmid, 76, 1, 10.1016/j.plasmid.2014.08.001
MK Lehman, 2015, Identification of the amino acids essential for LytSR-mediated signal transduction in <italic>Staphylococcus aureus</italic> and their roles in biofilm-specific gene expression, Mol Microbiol, 95, 723, 10.1111/mmi.12902