Đô thị hóa làm thay đổi sự phong phú và thành phần của cộng đồng kẻ thù và dẫn đến sự bùng phát rầy năn trên cây đô thị

Springer Science and Business Media LLC - Tập 24 - Trang 571-586 - 2020
Dávid Korányi1,2,3, Viktor Szigeti4, László Mezőfi5, Előd Kondorosy1, Viktor Markó5
1Department of Animal Science, University of Pannonia, Keszthely, Hungary
2Centre for Ecological Research, Institute of Ecology and Botany, “Lendület” Landscape and Conservation Ecology, Vácrátót, Hungary
3Centre for Ecological Research, GINOP Sustainable Ecosystems Group, Tihany, Hungary
4Centre for Ecological Research, Institute of Ecology and Botany, Lendület Ecosystem Services Research Group, Vácrátót, Hungary
5Plant Protection Institute, Szent István University, Budapest, Hungary

Tóm tắt

Đô thị hóa có thể ảnh hưởng đến sự phong phú của động vật chân đốt theo nhiều cách khác nhau. Trong khi các loài có phạm vi sinh sống hạn chế và khả năng phân tán kém thường phản ứng tiêu cực với môi trường đô thị, nhiều loài chuyên gia môi trường với khả năng phân tán tốt lại đạt mật độ cao tại các trung tâm thành phố. Hiệu ứng lọc của môi trường đô thị có thể ảnh hưởng mạnh mẽ đến các tương tác giữa kẻ thù, con mồi và loài tương trợ, từ đó ảnh hưởng đến sự phong phú của các loài động vật săn mồi và động vật ăn thực vật cả trực tiếp lẫn gián tiếp. Trong nghiên cứu này, chúng tôi đánh giá tác động của đô thị hóa đối với rầy năn, động vật chân đốt săn mồi và kiến trên cây phong đồng (Acer campestre) trong và xung quanh thành phố Budapest, Hungary. Chúng tôi sử dụng tỷ lệ bề mặt không thấm nước trong bán kính 500 m từ mỗi địa điểm như một chỉ số về mức độ đô thị hóa. Chúng tôi nhận thấy rằng sự phong phú của rầy năn tăng lên cùng với mức độ đô thị hóa. Tuy nhiên, sự phong phú của động vật chân đốt săn mồi và sự xuất hiện của các loài có khả năng phân tán kém trong cộng đồng kẻ thù tương quan tiêu cực với đô thị hóa, và chúng tôi xác định hai yếu tố độc lập này là những dự đoán quan trọng về sự phong phú của rầy năn. Sự phong phú của kiến giảm với mức độ đô thị hóa, và trái với mong đợi của chúng tôi, không ảnh hưởng đến mô hình phong phú của rầy năn. Kết quả của chúng tôi gợi ý rằng đô thị hóa, thông qua việc thay đổi sự phong phú và thành phần của các cộng đồng kẻ thù, có thể làm gián đoạn sự kiểm soát sinh học đối với quần thể rầy năn, do đó có thể góp phần vào sự bùng phát rầy năn trên các cây đô thị.

Từ khóa

#đô thị hóa #động vật chân đốt #rầy năn #cây đô thị #cộng đồng kẻ thù

Tài liệu tham khảo

Alaruikka D, Kotze DJ, Matveinen K, Niemelä J (2002) Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J Insect Conserv 6:195–206. https://doi.org/10.1023/A:1024432830064 Alberti M (1999) Urban patterns and environmental performance: what do we know? J Plan Educ Res 19:151–163. https://doi.org/10.1177/0739456X9901900205 Argañaraz CI, Rubio GD, Gleiser RM (2018) Spider communities in urban green patches and their relation to local and landscape traits. Biodivers Conserv 27:981–1009. https://doi.org/10.1007/s10531-017-1476-8 Bartha D, Király G, Schmidt D, Tiborcz V, Bán, M (2018) Hungarian Flora Atlas. Hungarian Flora Mapping database, Sopron, Hungary. http://floraatlasz.uni-sopron.hu/index.php?lang=en. Accessed 19 Jul 2019 Basset Y, Aberlenc H-P, Springate ND, Delvare G (1997) A review of methods for sampling arthropods in tree canopies. In: Stork NE, Adis JA, Didham RK (eds) Canopy arthropods. Chapman & Hall, London, pp 27–52 Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. https://doi.org/10.1079/BER2004350 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x Bivand RS, Wong DWS (2018) Comparing implementations of global and local indicators of spatial association. Test 27:716–748. https://doi.org/10.1007/s11749-018-0599-x Blackman RL, Eastop VF (2000) Aphids on the world's crops: an identification and information guide, 2nd edn. John Wiley & Sons, Chichester Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bull Br Arachnol Soc 14:308–317. https://doi.org/10.13156/arac.2009.14.7.308 Boreau de Roincé C, Lavigne C, Mandrin J, Rollard C, Symondson W (2013) Early-season predation on aphids by winter-active spiders in apple orchards revealed by diagnostic PCR. B Entomol Rese 103:148–154. https://doi.org/10.1017/S0007485312000636 Braun S, Flückiger W (1985) Increased population of the aphid Aphis pomi at a motorway: part 3—the effect of exhaust gases. Environ Pollut (Series A) 39:183–192. https://doi.org/10.1016/0143-1471(85)90016-9 Brown MW (2004) Role of aphid predator guild in controlling spirea aphid populations on apple in West Virginia, USA. Biol Control 29:189–198. https://doi.org/10.1016/S1049-9644(03)00153-1 Burkman CE, Gardiner MM (2014) Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol Control 75:58–67. https://doi.org/10.1016/j.biocontrol.2014.02.015 Butler CD, Trumble JT (2008) Effects of pollutants on bottom-up and top-down processes in insect-plant interactions. Environ Pollut 156:1–10. https://doi.org/10.1016/j.envpol.2007.12.026 Cahenzli F, Pfiffner L, Daniel C (2017) Reduced crop damage by self-regulation of aphids in an ecologically enriched, insecticide-free apple orchard. Agron Sustain Dev 37:1–8. https://doi.org/10.1007/s13593-017-0476-0 Carroll DP, Hoyt SC (1984) Augmentation of European earwigs (Dermaptera: Forficulidae) for biological control of apple aphid (Homoptera: Aphididae) in an apple orchard. J Econ Entomol 77:738–740. https://doi.org/10.1093/jee/77.3.738 Clarke KM, Fisher BL, LeBuhn G (2008) The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst 11:317–334. https://doi.org/10.1007/s11252-008-0065-8 Comont RF, Roy HE, Harrington R, Shortall CR, Purse BV (2014) Ecological correlates of local extinction and colonisation in the British ladybird beetles (Coleoptera: Coccinellidae). Biol Invasions 16:1805–1817. https://doi.org/10.1007/s10530-013-0628-3 Corcos D, Cerretti P, Caruso V, Mei M, Falco M, Marini L (2019) Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS One 14:e0214068. https://doi.org/10.1371/journal.pone.0214068 Crumb SE, Eide PM, Bonn AE (1941) The European earwig. USDA Tech Bull 766:1–76 Denys C, Schmidt H (1998) Insect communities on experimental mugwort (Artemisia vulgaris L.) plots along an urban gradient. Oecologia 113:269–277. https://doi.org/10.1007/s004420050378 Dixon AFG (1977) Aphid ecology: life cycles, polymorphism, and population regulation. Annu Rev Ecol Syst 8:329–353. https://doi.org/10.1146/annurev.es.08.110177.001553 Dixon AFG (1998) Aphid ecology: an optimization approach, 2nd edn. Chapman and Hall, New York Duffey E (1956) Aerial dispersal in a known spider population. J Anim Ecol 25:85–111. https://doi.org/10.2307/1852 Durak R, Węgrzyn E, Leniowski K (2016) Do all aphids benefit from climate warming? An effect of temperature increase on a native species of temperate climatic zone Cinara juniperi. Ethol Ecol Evol 28:188–201. https://doi.org/10.1080/03949370.2015.1034785 Egerer MH, Bichier P, Philpott SM (2016) Landscape and local habitat correlates of lady beetle abundance and species richness in urban agriculture. Ann Entom Soc Am 110:97–103. https://doi.org/10.1093/aesa/saw063 Eötvös CB, Magura T, Lövei GL (2018) A meta-analysis indicates reduced predation pressure with increasing urbanization. Landscape Urban Plan 180:54–59. https://doi.org/10.1016/j.landurbplan.2018.08.010 Furuta K (1985) Spatial distribution and mortality of aestivating dimorphs of the maple aphid, Periphyllus californiensis Shinji (Homoptera, Aphididae). Z Angew Entomol 100:256–264. https://doi.org/10.1111/j.1439-0418.1985.tb02778.x Gómez-Marco F, Tena A, Jaques JA, García AU (2016) Early arrival of predators controls Aphis spiraecola colonies in citrus clementines. J Pest Sci 89:69–79. https://doi.org/10.1007/s10340-015-0668-9 Gossner MM, Simons NK, Achtziger R, Blick T, Dorow WHO, Dziock F, Köhler F, Rabitsch W, Weisser WW (2015) A summary of eight traits of Coleoptera, Hemiptera, Orthoptera and Araneae, occurring in grasslands in Germany. Sci Data 2:150013. https://doi.org/10.1038/sdata.2015.13 Hall RW, Ehler LE (1980) Population ecology of Aphis nerii on oleander. Environmental Entomol 9:338–344. https://doi.org/10.1093/ee/9.3.338 Harrington R, Clark SJ, Welham SJ et al (2007) Environmental change and the phenology of European aphids. Glob Chang Biol 13:1550–1564. https://doi.org/10.1111/j.1365-2486.2007.01394.x Honěk A, Dixon AF, Soares AO, Skuhrovec J, Martinkova Z (2017) Spatial and temporal changes in the abundance and composition of ladybird (Coleoptera: Coccinellidae) communities. Curr Opin Insect Sci 20:61–67. https://doi.org/10.1016/j.cois.2017.04.001 Honěk A, Martinková Z, Štrobach J (2018) Effect of aphid abundance and urbanization on the abundance of Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 115:703–707. https://doi.org/10.14411/eje.2018.069 Junkiert Ł, Wieczorek K, Wojciechowski W (2011) Diagnostic characters of the species of the genus Periphyllus van der Hoeven, 1963 (Hemiptera, Aphidoidea: Chaitophorinae) recorded in Poland. Aphids Oth Hemipt Insects 17:5–19 Kirstová M, Pyszko P, Kočárek P (2019) Factors influencing microhabitat selection and food preference of tree-dwelling earwigs (Dermaptera) in a temperate floodplain forest. B Entomol Res 109:1–8. https://doi.org/10.1017/S0007485318000147 Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1 Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. https://doi.org/10.1007/s00442-004-1497-3 Lefebvre M, Franck P, Olivares J, Ricard JM, Mandrin JF, Lavigne C (2017) Spider predation on rosy apple aphid in conventional, organic and insecticide-free orchards and its impact on aphid populations. Biol Control 104:57–65. https://doi.org/10.1016/j.biocontrol.2016.10.009 Leigh S, van Emden HF (2017) Population dynamics: cycles and patterns. In: Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Wallingford, pp 262–279 Lessard JP, Buddle CM (2005) The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson nature reserve, Quebec. Can Entomol 137:215–225. https://doi.org/10.4039/n04-055 Long LC, D'Amico V, Frank SD (2019) Urban forest fragments buffer trees from warming and pests. Sci Total Environ 658:1523–1530. https://doi.org/10.1016/j.scitotenv.2018.12.293 Lövei GL, Horváth R, Elek Z, Magura T (2019) Diversity and assemblage filtering in ground-dwelling spiders (Araneae) along an urbanisation gradient in Denmark. Urban Ecosyst 22:345–353. https://doi.org/10.1007/s11252-018-0819-x Mader HJ, Schell C, Kornacker P (1990) Linear barriers to arthropod movements in the landscape. Biol Conserv 54:209–222. https://doi.org/10.1016/0006-3207(90)90052-Q Markó V, Jenser G, Kondorosy E, Ábrahám L, Balázs K (2013) Flowers for better pest control? The effects of apple orchard ground cover management on green apple aphids (Aphis spp.) (Hemiptera: Aphididae), their predators and the canopy insect community. Biocon Sci Tech 23:126–145. https://doi.org/10.1080/09583157.2012.743972 McDonnell MJ, Pickett ST (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237. https://doi.org/10.2307/1938259 McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc Ecol 23:1143–1155. https://doi.org/10.1007/s10980-008-9253-4 McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835. https://doi.org/10.1603/0013-8746(2000)093%5b0825:EOUAAR%5d2.0.CO;2 McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005 Meineke EK, Holmquist AJ, Wimp GM, Frank SD (2017) Changes in spider community composition are associated with urban temperature, not herbivore abundance. J Urban Ecol 3:1–8. https://doi.org/10.1093/jue/juw010 Merckx T, Van Dyck H (2019) Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob Ecol Biogeogr 28:1440–1455. https://doi.org/10.1111/geb.12969 Miñarro M, Fernández-Mata G, Medina P (2010) Role of ants in structuring the aphid community on apple. Ecol Entomol 35:206–215. https://doi.org/10.1111/j.1365-2311.2010.01173.x Moerkens R, Leirs H, Peusens G, Gobin B (2010) Dispersal of single-and double-brood populations of the European earwig, Forficula auricularia: a mark-recapture experiment. Entomol Exp Appl 137:19–27. https://doi.org/10.1111/j.1570-7458.2010.01031.x Muderere T, Murwira A, Tagwireyi P (2018) An analysis of trends in urban landscape ecology research in spatial ecological literature between 1986 and 2016. Curr Landscape Ecol Rep 3:43–56. https://doi.org/10.1007/s40823-018-0033-9 Mueller TF, Blommers LHM, Mols PJM (1988) Earwig (Forficula auricularia) predation on the woolly apple aphid, Eriosoma lanigerum. Entomol Exp Appl 47:145–152. https://doi.org/10.1111/j.1570-7458.1988.tb01129.x Nagy Cs, Cross JV, Markó V (2015) Can artificial nectaries outcompete aphids in ant-aphid mutualism? Applying artificial sugar sources for ants to support better biological control of rosy apple aphid, Dysaphis plantaginea Passerini in apple orchards. Crop Prot 77:127–138. https://doi.org/10.1016/j.cropro.2015.07.015 Niemelä J, Kotze DJ (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landscape Urban Plan 92:65–71. https://doi.org/10.1016/j.landurbplan.2009.05.016 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGinn D, Minchin PR, O'Hara RB, Simpson GL, Sólymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R Package Version 2.5–3. https://cran.r-project.org/web/packages/vegan/index.html Pacheco R, Vasconcelos HL (2007) Invertebrate conservation in urban areas: ants in the Brazilian Cerrado. Landscape Urban Plan 81:193–199. https://doi.org/10.1016/j.landurbplan.2006.11.004 Parsons SE, Frank SD (2019) Urban tree pests and natural enemies respond to habitat at different spatial scales. J Urban Ecol 5:1–15. https://doi.org/10.1093/jue/juz010 Piano E, De Wolf K, Bona F, Bonte D, Bowler DE, Isaia M, Lens L, Merckx T, Mertens D, van Kerckvoorde M, De Meester L, Hendrickx F (2017) Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob Chang Biol 23:2554–2564. https://doi.org/10.1111/gcb.13606 Piñol J, Espadaler X, Canellas N, Pérez N (2009a) Effects of the concurrent exclusion of ants and earwigs on aphid abundance in an organic citrus grove. BioControl 54:515–527. https://doi.org/10.1007/s10526-008-9203-8 Piñol J, Espadaler X, Pérez N, Beven K (2009b) Testing a new model of aphid abundance with sedentary and non-sedentary predators. Ecol Model 220:2469–2480. https://doi.org/10.1016/j.ecolmodel.2009.06.031 Purkart A, Morawski M, Masłowski A, Depa Ł (2019) Ant-mediated anholocyclic overwintering of Prociphilus fraxini (Hemiptera: Aphididae) in Central Europe. Entomol Fenn 30:179-185. https://doi.org/10.33338/ef.87175 Quantum GIS Development Team (2018) Quantum GIS geographic information system. Open Source Geospatial Foundation Project http://qgisosgeoorg Accessed 20 Dec 2018 R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. https://www.r-project.org/. Accessed 20 Dec 2018 Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38. https://doi.org/10.1146/annurev-ento-112408-085351 Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188. https://doi.org/10.1007/s00442-011-1965-5 Rizwan AM, Dennis YCL, Liu C (2008) A review on the generation, determination and mitigation of urban Heat Island. J Environ Sci 20:120–128. https://doi.org/10.1016/S1001-0742(08)60019-4 Rocha EA, Fellowes MD (2018) Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists? Urban Ecosyst 21:405–417. https://doi.org/10.1007/s11252-017-0727-5 Rocha EA, Fellowes MD (2020) Urbanisation alters ecological interactions: ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci Rep 10:6406. https://doi.org/10.1038/s41598-020-62422-z Rocha EA, Souza EN, Bleakley LA., Burley C, Mott JL, Rue-Glutting G, Fellowes MD (2018) Influence of urbanisation and garden plants on the diversity and abundance of aphids and their ladybird and hoverfly predators. Eur J of Entomol 115:140–149. https://doi.org/10.14411/eje.2018.013 Roloff A, Korn S, Gillner S (2009) The climate-species-matrix to select tree species for urban habitats considering climate change. Urban For Urban Gree 8:295–308. https://doi.org/10.1016/j.ufug.2009.08.002 Roy HE, Brown PM, Adriaens T et al (2016) The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biol Invasions 18:997–1044. https://doi.org/10.1007/s10530-016-1077-6 Schüepp C, Uzman D, Herzog F, Entling MH (2014) Habitat isolation affects plant–herbivore–enemy interactions on cherry trees. Biol Control 71:56–64. https://doi.org/10.1016/j.biocontrol.2014.01.007 Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. P Natl Acad Sci USA 109:16083–16088. https://doi.org/10.1073/pnas.1211658109 Shrewsbury PM, Raupp MJ (2006) Do top-down or bottom-up forces determine Stephanitis pyrioides abundance in urban landscapes? Ecol Appl 16:262–272. https://doi.org/10.1890/04-1347 Skinner GJ, Whittaker JB (1981) An experimental investigation of inter-relationships between the wood-ant (Formica rufa) and some tree-canopy herbivores. J Anim Ecol 50:313–326. https://doi.org/10.2307/4047 Stutz S, Entling MH (2011) Effects of the landscape context on aphid-ant-predator interactions on cherry trees. Biol Control 57:37–43. https://doi.org/10.1016/j.biocontrol.2011.01.001 Turrini T, Sanders D, Knop E (2016) Effects of urbanization on direct and indirect interactions in a tri-trophic system. Ecol Appl 26:664–675. https://doi.org/10.1890/14-1787 Venables WN, Ripley BD (2002) Modern applied statistics with S, 4nd edn. Springer, New York Vepsäläinen K, Ikonen H, Koivula MJ (2008) The structure of ant assemblages in an urban area of Helsinki, southern Finland. Ann Zool Fenn 45:109–127. https://doi.org/10.5735/086.045.0203 Wachmann E, Melber A, Deckert J (2004-2012) Wanzen Band 1–5. Goecke & Evers, Keltern Welch KD, Harwood JD (2014) Temporal dynamics of natural enemy–pest interactions in a changing environment. Biol Control 75:18–27. https://doi.org/10.1016/j.biocontrol.2014.01.004 Wyss E, Niggli U, Nentwig W (1995) The impact of spiders on aphid populations in a strip-managed apple orchard. J Appl Entomol 119:473–478. https://doi.org/10.1111/j.1439-0418.1995.tb01320.x Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York