Urban surface temperature observations from ground-based thermography: intra- and inter-facet variability

Urban Climate - Tập 35 - Trang 100748 - 2021
William Morrison1, Simone Kotthaus1,2, Sue Grimmond1
1Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, UK
2Institut Pierre Simon Laplace (IPSL), École Polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau Cedex, France

Tài liệu tham khảo

Acuña Paz y Miño, 2020, Visual metering of the urban radiative environment through 4π imagery, Infrared Phys. Technol., 110, 103463, 10.1016/j.infrared.2020.103463 Adderley, 2015, The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of an urban canopy, Atmos. Measur. Tech., 8, 2699, 10.5194/amt-8-2699-2015 Alchapar, 2014, Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones, Energy Build., 69, 22, 10.1016/j.enbuild.2013.10.012 Alexander, 2015, Spatial validation of an urban energy balance model using multi-temporal remotely sensed surface temperature, 1 Antoniou, 2019, CFD simulation of urban microclimate: validation using high-resolution field measurements, Sci. Total Environ., 695, 133743, 10.1016/j.scitotenv.2019.133743 Arnfield, 1998, An urban canyon energy budget model and its application to urban storage heat flux modeling, Energy Build., 27, 61, 10.1016/S0378-7788(97)00026-1 Asano, 1998, 317 Bird, R. E. and Hulstrom, R. L. (1981) ‘Simplified clear sky model for direct and diffuse insolation on horizontal surfaces’. doi: https://doi.org/10.2172/6510849. Blender, 2018 Bueno, 2012, Development and evaluation of a building energy model integrated in the TEB scheme, Geosci. Model Dev., 5, 433, 10.5194/gmd-5-433-2012 Cao, 2019, A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives, Remote Sens. Environ., 232, 111304, 10.1016/j.rse.2019.111304 Chen, 2011, The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31, 273, 10.1002/joc.2158 Christen, 2012, High-frequency fluctuations of surface temperatures in an urban environment, Theor. Appl. Climatol., 108, 301, 10.1007/s00704-011-0521-x Crawley, 2001, EnergyPlus: creating a new-generation building energy simulation program, Energy Build., 33, 319, 10.1016/S0378-7788(00)00114-6 Evans, 2011, 3-D GIS: virtual London and beyond, Cybergeo Fröhlich, 2019, Effect of radiation and wind on thermal comfort in urban environments - application of the RayMan and SkyHelios model, Urban Clim., 27, 1, 10.1016/j.uclim.2018.10.006 Gaitani, 2017, High-resolution spectral mapping of urban thermal properties with unmanned aerial vehicles, Build. Environ., 121, 215, 10.1016/j.buildenv.2017.05.027 Gastellu-Etchegorry, 2012, DART: A 3D model for remote sensing images and radiative budget of earth surfaces Gastellu-Etchegorry, 2015, Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes, Remote Sens., 7, 1667, 10.3390/rs70201667 Gong, 2018, Mapping sky, tree, and building view factors of street canyons in a high-density urban environment, Build. Environ., 134, 155, 10.1016/j.buildenv.2018.02.042 Google, 2019 Gronemeier, 2017, Effects of unstable stratification on ventilation in Hong Kong, Atmosphere, 8, 1, 10.3390/atmos8090168 Harman, 2004, Radiative exchange in an urban street canyon, Bound.-Layer Meteorol., 110, 301, 10.1023/A:1026029822517 Harshan, 2018, Evaluation of an urban land surface scheme over a tropical suburban neighborhood, Theor. Appl. Climatol., 133, 867, 10.1007/s00704-017-2221-7 Hartley, 2004 Hartz, 2006, Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions, Remote Sens. Environ., 104, 190, 10.1016/j.rse.2005.12.019 Hénon, 2012, An urban neighborhood temperature and energy study from the CAPITOUL experiment with the Solene model: part 2: influence of building surface heterogeneities, Theor. Appl. Climatol., 110, 197, 10.1007/s00704-012-0616-z Hilland, 2020, The effect of sub-facet scale surface structure on wall brightness temperatures at multiple scales, Theor. Appl. Climatol., 140, 767, 10.1007/s00704-020-03094-7 Hu, 2019, Analysis of urban surface morphologic effects on diurnal thermal directional anisotropy, ISPRS J. Photogramm. Remote Sens., 148, 1 Kanda, 2005, A simple energy balance model for regular building arrays, Bound.-Layer Meteorol., 116, 423, 10.1007/s10546-004-7956-x Krayenhoff, 2016, Daytime thermal anisotropy of urban Neighbourhoods: morphological causation, Remote Sens., 8, 108, 10.3390/rs8020108 Krayenhoff, E. S., Jiang, T., Christen, A., Martilli, A., Oke, T. R., et al. (2020) ‘A multi-layer urban canopy meteorological model with trees (BEP-Tree): street tree impacts on pedestrian-level climate’, Urban Climate, 32(July 2019), p. 100590. doi: https://doi.org/10.1016/j.uclim.2020.100590. Krayenhoff, 2007, A microscale three-dimensional urban energy balance model for studying surface temperatures, Bound.-Layer Meteorol., 123, 433, 10.1007/s10546-006-9153-6 Kusaka, 2004, Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case, J. Meteorol. Soc. Jpn., 82, 67, 10.2151/jmsj.82.67 Lagouarde, 2004, Airborne experimental measurements of the angular variations in surface temperature over urban areas: case study of Marseille (France), Remote Sens. Environ., 93, 443, 10.1016/j.rse.2003.12.011 Lee, 2018, Analyzing thermal characteristics of urban streets using a thermal imaging camera: a case study on commercial streets in Seoul, Korea, Sustainability (Switzerland), 10, 1 Li, 2018, Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View, Landsc. Urban Plan., 169, 81, 10.1016/j.landurbplan.2017.08.011 Lindberg, 2011, The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation, Theor. Appl. Climatol., 105, 311, 10.1007/s00704-010-0382-8 Masson, 2000, A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Layer Meteorol., 94, 357, 10.1023/A:1002463829265 Meier, 2010, Determination of persistence effects in spatio-temporal patterns of upward long-wave radiation flux density from an urban courtyard by means of Time-Sequential Thermography, Remote Sens. Environ., 114, 21, 10.1016/j.rse.2009.08.002 Meier, 2011, Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry, Atmos. Measur. Tech., 4, 909, 10.5194/amt-4-909-2011 Morrison, 2020 Morrison, 2018, A novel method to obtain three-dimensional urban surface temperature from ground-based thermography, Remote Sens. Environ., 215, 268, 10.1016/j.rse.2018.05.004 Morrison, 2020, Atmospheric and emissivity corrections for ground-based thermography using 3D radiative transfer modelling, Rem. Sens. Environ., 237, 111524, 10.1016/j.rse.2019.111524 Naughton, 2019, Evaluating the variability of urban land surface temperatures using drone observations, Rem. Sens., 11, 1722, 10.3390/rs11141722 Offerle, 2006, Intraurban differences of surface energy fluxes in a central European City, J. Appl. Meteorol. Climatol., 45, 125, 10.1175/JAM2319.1 Optris GmbH, 2018 Pearlmutter, 2006, Physical modeling of pedestrian energy exchange within the urban canopy, Build. Environ., 41, 783, 10.1016/j.buildenv.2005.03.017 Perpiñán, 2012, {solaR}: Solar radiation and photovoltaic systems with {R}, J. Stat. Softw., 50, 1, 10.18637/jss.v050.i09 Porson, 2010, Implementation of a new urban energy budget scheme in the MetUM. Part I: description and idealized simulations, Q. J. R. Meteorol. Soc., 136, 1514, 10.1002/qj.668 Rotach, 2005, BUBBLE - an urban boundary layer meteorology project, Theor. Appl. Climatol., 81, 231, 10.1007/s00704-004-0117-9 Schaepman-Strub, 2006, Reflectance quantities in optical remote sensing-definitions and case studies, Remote Sens. Environ., 103, 27, 10.1016/j.rse.2006.03.002 Toparlar, 2015, CFD simulation and validation of urban microclimate: a case study for Bergpolder Zuid, Rotterdam, Build. Environ., 83, 79, 10.1016/j.buildenv.2014.08.004 Toparlar, 2017, A review on the CFD analysis of urban microclimate, Renew. Sust. Energ. Rev., 80, 1613, 10.1016/j.rser.2017.05.248 Vollmer, 2009, Newton’s law of cooling revisited, Eur. J. Phys., 30, 1063, 10.1088/0143-0807/30/5/014 Vollmer, 2017 Voogt, 2008, Assessment of an urban sensor view model for thermal anisotropy, Remote Sens. Environ., 112, 482, 10.1016/j.rse.2007.05.013 Voogt, 2000, Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area, J. Appl. Meteorol., 39, 1679, 10.1175/1520-0450-39.10.1679 Voogt, 1997, Complete urban surface temperatures, J. Appl. Meteorol., 36, 1117, 10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2 Wang, 2018, A geometric model to simulate thermal anisotropy over a sparse urban surface (GUTA-sparse), Remote Sens. Environ., 209, 263, 10.1016/j.rse.2018.02.051 Xu, 2020, Systematic numerical study on the effect of thermal properties of building surface on its temperature and sensible heat flux, Build. Environ., 168