Urban flood modelling combining top-view LiDAR data with ground-view SfM observations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdullah AF, Rahman A, Vojinovic Z. LiDAR filtering algorithms for urban flood application: review on current algorithms and filters test. In: 8th International conference on urban drainage modelling. Tokyo, Japan; 2009. http://dx.doi.org/10.2166/hydro.2011.009.
Abdullah, 2012, Improved methodology for processing raw LiDAR data to support urban flood modelling – accounting for elevated roads and bridges, J Hydroinform, 14, 253, 10.2166/hydro.2011.009
Abdullah, 2012, A methodology for processing raw LiDAR data to support urban flood modelling framework, J Hydroinform, 14, 75, 10.2166/hydro.2011.089
Boonya-aroonnet S. Applications of the innovative modelling of urban surface flooding in the UK case studies. In: 11th International conference on urban drainage, Edinburgh, UK; 2010.
Casas, 2012, Assessing levee stability with geometric parameters derived from airborne LiDAR, Remote Sens Environ, 117, 281, 10.1016/j.rse.2011.10.003
Chen, 2006, Establishing the database of inundation potential in Taiwan, Nat Hazards, 37, 107, 10.1007/s11069-005-4659-7
Chen, 2012, Multi-layered coarse grid modelling in 2D urban flood simulations, J Hydrol, 470–471, 1
Chow, 1959
Clarke, 1998, The development of camera calibration methods and models, Photogramm Rec, 16, 51, 10.1111/0031-868X.00113
Cunge, 1980
DHI Water & Environment. Klang River-basin environment improvement and flood mitigation project (Stormwater Management and Road Tunnel – SMART). Final report. Department of Irrigation and Drainage, Malaysia; 2004.
Djordjević, 2004, Simulation of transcritical flow in pipe/channel networks, J Hydraul Eng, 130, 1167, 10.1061/(ASCE)0733-9429(2004)130:12(1167)
Evans, 2008
Fewtrell, 2011, Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data, Phys Chem Earth Pt A/B/C, 36, 281, 10.1016/j.pce.2010.12.011
Goesele M, Snavely N, Curless B, Hoppe H, Seitz SM. Multi-view stereo for community photo collections. In: IEEE 11th ICCV. Rio de Janeiro, Brazil; 2007. http://dx.doi.org/10.1109/ICCV.2007.4408933.
Hai, 2010, Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model, Water Sci Technol, 62, 1859, 10.2166/wst.2010.381
Haile AT, Rientjes TH. Effects of LiDAR DEM resolution in flood modelling: a model sensitivity study for the city of Tegucigalpa, Honduras. In: 36th ISPRS workshop ‘laser scanning’. Enschede, The Netherlands; 2005.
Hervouet J, Janin J. Finite element algorithms for modelling flood propagation. In: Proceedings, modelling of flood propagation over initially dry areas. Milan, Italy; 1994.
Hervouet, 1996, Recent advances in numerical methods for fluid flow, 183
Hestholm, 1994, 2D finite-difference elastic wave modelling including surface topography, Geophys Prospect, 42, 371, 10.1111/j.1365-2478.1994.tb00216.x
Horritt, 2001, Effects of spatial resolution on a raster based model of flood flow, J Hydrol, 253, 239, 10.1016/S0022-1694(01)00490-5
Hsu, 2000, Inundation simulation for urban drainage basin with storm sewer system, J Hydrol, 234, 21, 10.1016/S0022-1694(00)00237-7
Hunter, 2008, Benchmarking 2D hydraulic models for urban flooding, P Ice-water Manage, 161, 13
Irschara, 2012, Large-scale, dense city reconstruction from user-contributed photos, Comput Vis Image Und, 116, 2, 10.1016/j.cviu.2011.07.010
Jancosek M, Pajdla T. Multi-view reconstruction preserving weakly-supported surfaces. In: IEEE conference on CVPR, CO, USA; 2011. http://dx.doi.org/10.1109/CVPR.2011.5995693.
Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int J Comput Vision, 60, 91, 10.1023/B:VISI.0000029664.99615.94
Luscombe, 1993, Applying remote sensing technologies to natural disaster risk management: implications for developmental investments, Acta Astronaut, 29, 871, 10.1016/0094-5765(93)90169-W
Mark, 2004, Potential and limitations of 1D modelling of urban flooding, J Hydrol, 299, 284, 10.1016/S0022-1694(04)00373-7
Marks, 2000, Integration of high-resolution topographic data with floodplain flow models, Hydrol Process, 14, 2109, 10.1002/1099-1085(20000815/30)14:11/12<2109::AID-HYP58>3.0.CO;2-1
Mitasova H, Hardin E, Starek MJ, Harmon RS, Overton MF, Hengl T, Evans I, Wilson J, Gould M. Landscape dynamics from LiDAR data time series. In: Geomorphometry. CA, USA; 2011.
Neal, 2009, Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations, J Hydrol, 368, 42, 10.1016/j.jhydrol.2009.01.026
Puente, 2013, Review of mobile mapping and surveying technologies, Measurement, 46, 2127, 10.1016/j.measurement.2013.03.006
Razafison, 2012, A shallow water model for the numerical simulation of overland flow on surfaces with ridges and furrows, Eur J Mech B-Fluids, 31, 44, 10.1016/j.euromechflu.2011.07.002
Remondino, 2006, Image-based 3D modelling: a review, Photogramm Rec, 21, 269, 10.1111/j.1477-9730.2006.00383.x
Rychkov, 2012, Computational and methodological aspects of terrestrial surface analysis based on point clouds, Comput Geosci, 42, 64, 10.1016/j.cageo.2012.02.011
Sampson, 2012, Use of terrestrial laser scanning data to drive decimetric resolution urban inundation models, Adv Water Resour, 41, 1, 10.1016/j.advwatres.2012.02.010
Schelfault, 2014, Bringing flood resilience into practice: the FREEMAN project, Environ Sci Policy, 14, 825, 10.1016/j.envsci.2011.02.009
Schubert, 2008, Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding, Adv Water Resour, 31, 1603, 10.1016/j.advwatres.2008.07.012
Schubert, 2012, Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency, Adv Water Resour, 41, 49, 10.1016/j.advwatres.2012.02.012
Smeeckaert, 2013, Large-scale classification of water areas using airborne topographic LiDAR data, Remote Sens Environ, 138, 134, 10.1016/j.rse.2013.07.004
Smith, 1981, Actual and potential flood damage: a case study for urban Lismore, NSW, Australia, Appl Geogr, 1, 31, 10.1016/0143-6228(81)90004-7
Smith, 2012, Evaluation of a coastal flood inundation model using hard and soft data, Environ Modell Softw, 30, 35
Snavely N, Seitz SM, Szeliski R. Photo tourism: exploring photo collections in 3D. In: Proceedings, ACM SIGGRAPH; 2006. http://dx.doi.org/10.1145/1179352.1141964.
Snavely N, Simon I, Goesele M, Szeliski R, Seitz SM. Scene reconstruction and visualization from community photo collections. In: Proceedings of the IEEE; 2010. http://dx.doi.org/10.1109/JPROC.2010.2049330.
Stelling G, Kernkamp H, Laguzzi M. Delft flooding system: a powerful tool for inundation assessment based upon a positive flow simulation. In: HIC. Copenhagen, Denmark; 1998.
Tsubaki, 2010, Unstructured grid generation using LiDAR data for urban flood inundation modelling, Hydrol Process, 24, 1404, 10.1002/hyp.7608
Tuite K, Snavely N, Hsiao D, Tabing N, Popovic Z. PhotoCity: training experts at large-scale image acquisition through a competitive game. In: Proceedings, CHI; 2011. http://dx.doi.org/10.1145/1978942.1979146.
Vojinović, 2009, On the use of 1D and coupled 1D–2D modelling approaches for assessment of flood damage in urban areas, Urban Water J, 6, 183, 10.1080/15730620802566877
Vojinović, 2011, Effects of model schematisation, geometry and parameter values on urban flood modelling, Water Sci Technol, 63, 462, 10.2166/wst.2011.244
Vojinović, 2012
Vojinović, 2013, Modelling floods in urban areas and representation of buildings with a method based on adjusted conveyance and storage characteristics, J Hydroinform, 15, 1150, 10.2166/hydro.2012.181
Wang, 2007, Using airborne bathymetric LiDAR to detect bottom type variation in shallow waters, Remote Sens Environ, 106, 123, 10.1016/j.rse.2006.08.003
Wendel A, Maurer M, Graber G, Pock T, Bischof H. Dense reconstruction on-the-fly. In: 2012 IEEE conference on CVPR. RI, USA; 2012. http://dx.doi.org/10.1109/CVPR.2012.6247833.
Westoby, 2012, ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications, Geomorphology, 179, 300, 10.1016/j.geomorph.2012.08.021
Wu CC. SiftGPU: a GPU implementation of scale invaraint feature transform (SIFT), 2007. <http://cs.unc.edu/~ccwu/siftgpu> [accessed January 2014].
Wu CC, Agarwal S, Curless B, Seitz SM. Multicore bundle adjustment. In: IEEE international conference on CVPR. CO, USA; 2011. http://dx.doi.org/10.1109/CVPR.2011.5995552.
Wu CC. VisualSFM: a visual structure from motion system. <http://homes.cs.washington.edu/~ccwu/vsfm> [accessed January 2014].