Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhu cầu nước sinh hoạt đô thị ở Bắc Kinh vào năm 2020: Mô hình dựa trên tác nhân
Tóm tắt
Bắc Kinh đang đối mặt với tình trạng thiếu nước nghiêm trọng do sự phát triển xã hội - kinh tế nhanh chóng và sự gia tăng dân số, và một hướng dẫn về quy định nước đã được ban hành để kiểm soát lượng nước sử dụng quốc gia. Để đối phó với tình trạng thiếu nước và đạt được mục tiêu quy định, việc nghiên cứu sự biến động của nhu cầu nước có ý nghĩa rất lớn. Trong bài báo này, một mô hình dựa trên tác nhân có tên là HWDP được phát triển để dự đoán nhu cầu nước sinh hoạt của hộ gia đình đô thị ở Bắc Kinh. Mô hình này bao gồm các hành vi ngẫu nhiên và phản hồi do hai vai trò tác nhân gây ra, đó là tác nhân chính phủ và tác nhân hộ gia đình. Tác nhân chính phủ sử dụng các phương tiện kinh tế và tuyên truyền để thúc đẩy tác nhân hộ gia đình tối ưu hóa tiêu thụ nước của mình. Thêm vào đó, mức tiêu thụ cũng bị ảnh hưởng bởi nhu cầu nước cơ bản suy diễn từ hệ thống chi tiêu tuyến tính mở rộng. Kết quả cho thấy tổng nhu cầu nước của các hộ gia đình đô thị ở Bắc Kinh sẽ tăng lên 317,5 triệu mét khối vào năm 2020, trong khi giá nước tiếp tục tăng ở mức thấp. Tuy nhiên, nhu cầu sẽ giảm xuống 294,9 triệu mét khối nếu giá nước tăng cao với mức tăng rất thấp trong thu nhập khả dụng bình quân đầu người. Cuối cùng, một số khuyến nghị chính sách về quy định nước được đưa ra.
Từ khóa
#Bắc Kinh #nhu cầu nước #nước sinh hoạt đô thị #mô hình tác nhân #quy định nướcTài liệu tham khảo
Ahmad S, Prashar D (2010) Evaluating municipal water conservation policies using a dynamic simulation model. Water Resour Manag 24(13):3371–3395
Altunkaynak A, Özger M, Çakmakci M (2005) Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resour Manag 19(5):641–654
Alvisi S, Franchini M, Marinelli A (2003) A stochastic model for representing drinking water demand at residential level. Water Resour Manag 17(3):197–222
Arbués F, García-Valiñas MÁ, Martínez-Espiñeira R (2003) Estimation of residential water demand: a state-of-the-art review. J Socio-Econ 32(1):81–102
Arbués F, Barberán R, Villanúa I (2004) Price impact on urban residential water demand: a dynamic panel data approach. Water Resour Res 40(11), W11402
Arbués F, Villanúa I, Barberán R (2010) Household size and residential water demand: an empirical approach. Aust J Agric Resour Econ 54(1):61–80
Athanasiadis IN, Mentes AK, Mitkas PA, Mylopoulos YA (2005) A hybrid agent-based model for estimating residential water demand. Simulation 81(3):175–187
Babel MS, Gupta AD, Pradhan P (2007) A multivariate econometric approach for domestic water demand modeling: an application to Kathmandu, Nepal. Water Resour Manag 21(3):573–589
Balling RC, Gober P (2007) Climate variability and residential water use in the city of Phoenix, Arizona. J Appl Meteorol Climatol 46(7):1130–1137
Barthel R, Janisch S, Schwarz N et al (2008) An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environ Model Softw 23(9):1095–1121
Beijing Municipal Bureau of Statistics (2005) Beijing statistical yearbook 2005. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2006) Beijing statistical yearbook 2006. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2007) Beijing statistical yearbook 2007. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2008) Beijing statistical yearbook 2008. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2009) Beijing statistical yearbook 2009. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2010) Beijing statistical yearbook 2010. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2011) Beijing statistical yearbook 2011. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Bureau of Statistics (2012) Beijing statistical yearbook 2012. China Statistics Press, Beijing (in Chinese)
Beijing Municipal Commission of Development and Reform (2011) The twelfth five-year plan for the conservation and utilization of water resources (in Chinese)
Billings RB, Agthe DE (1998) State-space versus multiple regression for forecasting urban water demand. J Water Resour Plan Manag 124(2):113–117
Browne AL, Medd W, Anderson B (2013) Developing novel approaches to tracking domestic water demand under uncertainty-a reflection on the “Up Scaling” of social science approaches in the United Kingdom. Water Resour Manag 27(4):1013–1035
Campisi-Pinto S, Adamowski J, Oron G (2012) Forecasting urban water demand via wavelet-denoising and neural network models. Case study: city of Syracuse, Italy. Water Resour Manag 26(12):3539–3558
Chen H, Yang ZF (2009) Residential water demand model under block rate pricing: a case study of Beijing, China. Commun Nonlinear Sci Numer Simul 14(5):2462–2468
Chu JY, Wang C, Chen JN, Wang H (2009) Agent-based residential water use behavior simulation and policy implications: a case-study in Beijing city. Water Resour Manag 23(15):3267–3295
Danielson LE (1979) An analysis of residential demand for water using micro time-series data. Water Resour Res 15(4):763–767
Dharmaratna D, Harris E (2012) Estimating residential water demand using the Stone-Geary functional form: the case of Sri Lanka. Water Resour Manag 26(8):2283–2299
Espey M, Espey J, Shaw WD (1997) Price elasticity of residential demand for water: a meta-analysis. Water Resour Res 33(6):1369–1374
Firat M, Yurdusev MA, Turan ME (2009) Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resour Manag 23(4):617–632
Fox C, McIntosh BS, Jeffrey P (2009) Classifying households for water demand forecasting using physical property characteristics. Land Use Policy 26(3):558–568
Franczyk J, Chang H (2009) Spatial analysis of water use in Oregon, USA, 1985–2005. Water Resour Manag 23(4):755–774
Galán JM, López-Paredes A, del Olmo R (2009) An agent-based model for domestic water management in Valladolid metropolitan area. Water Resour Res 45, W05401
Gaudin S (2006) Effect of price information on residential water demand. Appl Econ 38(4):383–393
Ghiassi M, Zimbra DK, Saidane H (2008) Urban water demand forecasting with a dynamic artificial neural network model. J Water Resour Plan Manag 134(2):138–146
Gilbert N (2007) Agent based models. Sage, London
Holland JH (1995) Hidden order: How adaptation builds complexity. Addison-Wesley, Reading
House-Peters LA, Chang H (2011) Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour Res 47, W05401
House-Peters L, Pratt B, Chang H (2010) Effects of urban spatial structure, sociodemographics, and climate on residential water consumption in Hillsboro, Oregon. J Am Water Resour Assoc 46(3):461–472
Howe CW, Linaweaver FP (1967) The impact of price on residential water demand and its relation to system design and price structure. Water Resour Res 3(1):13–32
Jin JL, Wei YM (2008) Generalized intelligent assessment methods for complex systems and applications. Science Press, Beijing (in Chinese)
Li YH, Wang DX (2008) Analysis of the urban household water demand function and evaluation of the water saving effect of water tariff. J China Inst Water Resour Hydropower Res 6(2):156–160 (in Chinese)
Li XF, Liu GZ, He CZ (2001) Selection of forecast model for water consumption of Chengdu’s residents in the future. J Sichuan Univ (Eng Sci Ed) 33(6):104–107 (in Chinese)
Lluch C (1973) The extended linear expenditure system. Eur Econ Rev 4(1):21–32
Lyman RA (1992) Peak and off-peak residential water demand. Water Resour Res 28(9):2159–2167
Mayer PW, DeOreo WB (1999) Residential end uses of water. AWWA Research Foundation, Denver
Miller JH, Page SE (2007) Complex adaptive systems: An introduction to computational models of social life. Princeton University Press, Princeton
Milly PCD, Betancourt J, Falkenmark M et al (2008) Stationarity is dead: whither water management? Science 319:573–574
Praskievicz S, Chang H (2009) Identifying the relationships between urban water consumption and weather variables in Seoul, Korea. Phys Geogr 30(4):324–337
Qi C, Chang NB (2011) System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. J Environ Manag 92(6):1628–1641
Ruth M, Bernier C, Jollands N, Golubiewski N (2007) Adaptation of urban water supply infrastructure to impacts from climate and socioeconomic changes: the case of Hamilton, New Zealand. Water Resour Manag 21(6):1031–1045
Schleich J, Hillenbrand T (2009) Determinants of residential water demand in Germany. Ecol Econ 68(6):1756–1769
Shandas V, Rao M, McGrath MM (2012) The implications of climate change on residential water use: a micro-scale analysis of Portland (OR), USA. J Water Clim Chang 3(3):225–238
Valkering P, Tabara JD, Wallman P, Offermans A (2009) Modelling cultural and behavioural change in water management: an integrated, agent based, gaming approach. Integr Assess 9(1):19–46
Wu L, Zhou HC (2010) Urban water demand forecasting based on HP filter and fuzzy neural network. J Hydroinformatics 12(2):172–184
Zhou SL, McMahon TA, Walton A, Lewis J (2000) Forecasting daily urban water demand: a case study of Melbourne. J Hydrol 236(3–4):153–164