Nhu cầu nước sinh hoạt đô thị ở Bắc Kinh vào năm 2020: Mô hình dựa trên tác nhân

Springer Science and Business Media LLC - Tập 28 - Trang 2967-2980 - 2014
Xiao-Chen Yuan1,2, Yi-Ming Wei1,2, Su-Yan Pan1,2, Ju-Liang Jin1,3
1Center for Energy and Environmental Policy Research, Beijing Institute of Technology (BIT), Beijing, China
2School of Management and Economics, Beijing Institute of Technology, Beijing, China
3School of Civil Engineering, Hefei University of Technology, Hefei, China

Tóm tắt

Bắc Kinh đang đối mặt với tình trạng thiếu nước nghiêm trọng do sự phát triển xã hội - kinh tế nhanh chóng và sự gia tăng dân số, và một hướng dẫn về quy định nước đã được ban hành để kiểm soát lượng nước sử dụng quốc gia. Để đối phó với tình trạng thiếu nước và đạt được mục tiêu quy định, việc nghiên cứu sự biến động của nhu cầu nước có ý nghĩa rất lớn. Trong bài báo này, một mô hình dựa trên tác nhân có tên là HWDP được phát triển để dự đoán nhu cầu nước sinh hoạt của hộ gia đình đô thị ở Bắc Kinh. Mô hình này bao gồm các hành vi ngẫu nhiên và phản hồi do hai vai trò tác nhân gây ra, đó là tác nhân chính phủ và tác nhân hộ gia đình. Tác nhân chính phủ sử dụng các phương tiện kinh tế và tuyên truyền để thúc đẩy tác nhân hộ gia đình tối ưu hóa tiêu thụ nước của mình. Thêm vào đó, mức tiêu thụ cũng bị ảnh hưởng bởi nhu cầu nước cơ bản suy diễn từ hệ thống chi tiêu tuyến tính mở rộng. Kết quả cho thấy tổng nhu cầu nước của các hộ gia đình đô thị ở Bắc Kinh sẽ tăng lên 317,5 triệu mét khối vào năm 2020, trong khi giá nước tiếp tục tăng ở mức thấp. Tuy nhiên, nhu cầu sẽ giảm xuống 294,9 triệu mét khối nếu giá nước tăng cao với mức tăng rất thấp trong thu nhập khả dụng bình quân đầu người. Cuối cùng, một số khuyến nghị chính sách về quy định nước được đưa ra.

Từ khóa

#Bắc Kinh #nhu cầu nước #nước sinh hoạt đô thị #mô hình tác nhân #quy định nước

Tài liệu tham khảo

Ahmad S, Prashar D (2010) Evaluating municipal water conservation policies using a dynamic simulation model. Water Resour Manag 24(13):3371–3395 Altunkaynak A, Özger M, Çakmakci M (2005) Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resour Manag 19(5):641–654 Alvisi S, Franchini M, Marinelli A (2003) A stochastic model for representing drinking water demand at residential level. Water Resour Manag 17(3):197–222 Arbués F, García-Valiñas MÁ, Martínez-Espiñeira R (2003) Estimation of residential water demand: a state-of-the-art review. J Socio-Econ 32(1):81–102 Arbués F, Barberán R, Villanúa I (2004) Price impact on urban residential water demand: a dynamic panel data approach. Water Resour Res 40(11), W11402 Arbués F, Villanúa I, Barberán R (2010) Household size and residential water demand: an empirical approach. Aust J Agric Resour Econ 54(1):61–80 Athanasiadis IN, Mentes AK, Mitkas PA, Mylopoulos YA (2005) A hybrid agent-based model for estimating residential water demand. Simulation 81(3):175–187 Babel MS, Gupta AD, Pradhan P (2007) A multivariate econometric approach for domestic water demand modeling: an application to Kathmandu, Nepal. Water Resour Manag 21(3):573–589 Balling RC, Gober P (2007) Climate variability and residential water use in the city of Phoenix, Arizona. J Appl Meteorol Climatol 46(7):1130–1137 Barthel R, Janisch S, Schwarz N et al (2008) An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environ Model Softw 23(9):1095–1121 Beijing Municipal Bureau of Statistics (2005) Beijing statistical yearbook 2005. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2006) Beijing statistical yearbook 2006. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2007) Beijing statistical yearbook 2007. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2008) Beijing statistical yearbook 2008. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2009) Beijing statistical yearbook 2009. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2010) Beijing statistical yearbook 2010. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2011) Beijing statistical yearbook 2011. China Statistics Press, Beijing (in Chinese) Beijing Municipal Bureau of Statistics (2012) Beijing statistical yearbook 2012. China Statistics Press, Beijing (in Chinese) Beijing Municipal Commission of Development and Reform (2011) The twelfth five-year plan for the conservation and utilization of water resources (in Chinese) Billings RB, Agthe DE (1998) State-space versus multiple regression for forecasting urban water demand. J Water Resour Plan Manag 124(2):113–117 Browne AL, Medd W, Anderson B (2013) Developing novel approaches to tracking domestic water demand under uncertainty-a reflection on the “Up Scaling” of social science approaches in the United Kingdom. Water Resour Manag 27(4):1013–1035 Campisi-Pinto S, Adamowski J, Oron G (2012) Forecasting urban water demand via wavelet-denoising and neural network models. Case study: city of Syracuse, Italy. Water Resour Manag 26(12):3539–3558 Chen H, Yang ZF (2009) Residential water demand model under block rate pricing: a case study of Beijing, China. Commun Nonlinear Sci Numer Simul 14(5):2462–2468 Chu JY, Wang C, Chen JN, Wang H (2009) Agent-based residential water use behavior simulation and policy implications: a case-study in Beijing city. Water Resour Manag 23(15):3267–3295 Danielson LE (1979) An analysis of residential demand for water using micro time-series data. Water Resour Res 15(4):763–767 Dharmaratna D, Harris E (2012) Estimating residential water demand using the Stone-Geary functional form: the case of Sri Lanka. Water Resour Manag 26(8):2283–2299 Espey M, Espey J, Shaw WD (1997) Price elasticity of residential demand for water: a meta-analysis. Water Resour Res 33(6):1369–1374 Firat M, Yurdusev MA, Turan ME (2009) Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resour Manag 23(4):617–632 Fox C, McIntosh BS, Jeffrey P (2009) Classifying households for water demand forecasting using physical property characteristics. Land Use Policy 26(3):558–568 Franczyk J, Chang H (2009) Spatial analysis of water use in Oregon, USA, 1985–2005. Water Resour Manag 23(4):755–774 Galán JM, López-Paredes A, del Olmo R (2009) An agent-based model for domestic water management in Valladolid metropolitan area. Water Resour Res 45, W05401 Gaudin S (2006) Effect of price information on residential water demand. Appl Econ 38(4):383–393 Ghiassi M, Zimbra DK, Saidane H (2008) Urban water demand forecasting with a dynamic artificial neural network model. J Water Resour Plan Manag 134(2):138–146 Gilbert N (2007) Agent based models. Sage, London Holland JH (1995) Hidden order: How adaptation builds complexity. Addison-Wesley, Reading House-Peters LA, Chang H (2011) Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour Res 47, W05401 House-Peters L, Pratt B, Chang H (2010) Effects of urban spatial structure, sociodemographics, and climate on residential water consumption in Hillsboro, Oregon. J Am Water Resour Assoc 46(3):461–472 Howe CW, Linaweaver FP (1967) The impact of price on residential water demand and its relation to system design and price structure. Water Resour Res 3(1):13–32 Jin JL, Wei YM (2008) Generalized intelligent assessment methods for complex systems and applications. Science Press, Beijing (in Chinese) Li YH, Wang DX (2008) Analysis of the urban household water demand function and evaluation of the water saving effect of water tariff. J China Inst Water Resour Hydropower Res 6(2):156–160 (in Chinese) Li XF, Liu GZ, He CZ (2001) Selection of forecast model for water consumption of Chengdu’s residents in the future. J Sichuan Univ (Eng Sci Ed) 33(6):104–107 (in Chinese) Lluch C (1973) The extended linear expenditure system. Eur Econ Rev 4(1):21–32 Lyman RA (1992) Peak and off-peak residential water demand. Water Resour Res 28(9):2159–2167 Mayer PW, DeOreo WB (1999) Residential end uses of water. AWWA Research Foundation, Denver Miller JH, Page SE (2007) Complex adaptive systems: An introduction to computational models of social life. Princeton University Press, Princeton Milly PCD, Betancourt J, Falkenmark M et al (2008) Stationarity is dead: whither water management? Science 319:573–574 Praskievicz S, Chang H (2009) Identifying the relationships between urban water consumption and weather variables in Seoul, Korea. Phys Geogr 30(4):324–337 Qi C, Chang NB (2011) System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. J Environ Manag 92(6):1628–1641 Ruth M, Bernier C, Jollands N, Golubiewski N (2007) Adaptation of urban water supply infrastructure to impacts from climate and socioeconomic changes: the case of Hamilton, New Zealand. Water Resour Manag 21(6):1031–1045 Schleich J, Hillenbrand T (2009) Determinants of residential water demand in Germany. Ecol Econ 68(6):1756–1769 Shandas V, Rao M, McGrath MM (2012) The implications of climate change on residential water use: a micro-scale analysis of Portland (OR), USA. J Water Clim Chang 3(3):225–238 Valkering P, Tabara JD, Wallman P, Offermans A (2009) Modelling cultural and behavioural change in water management: an integrated, agent based, gaming approach. Integr Assess 9(1):19–46 Wu L, Zhou HC (2010) Urban water demand forecasting based on HP filter and fuzzy neural network. J Hydroinformatics 12(2):172–184 Zhou SL, McMahon TA, Walton A, Lewis J (2000) Forecasting daily urban water demand: a case study of Melbourne. J Hydrol 236(3–4):153–164