Khôi phục và tinh chế uranium từ các dòng chất thải mô phỏng chứa nồng độ uranium cao bằng màng lỏng phân tán

Journal of Radioanalytical and Nuclear Chemistry - Tập 317 - Trang 355-366 - 2018
Maretha Fourie1, Derik Jacobus van der Westhuizen2, Henning Manfred Krieg2
1Nuclear Waste Research, Applied Chemistry, South African Nuclear Energy Corporation SOC Ltd (Necsa), Pretoria, South Africa
2Chemical Resource Beneficiation, North-West University, Potchefstroom, South Africa

Tóm tắt

Tính phù hợp của màng lỏng phân tán (DLM) trong việc khôi phục và tinh chế uranium từ các dòng chất thải mô phỏng chứa axit nitric, nồng độ uranium cao và các chất ô nhiễm phóng xạ với tri-n-butyl phosphate (TBP) và ammonium carbonate ((NH4)2CO3) làm dung dịch tách đã được nghiên cứu. Các đại diện phóng xạ không được chiết xuất và việc khôi phục hoàn toàn uranium đã được thực hiện từ các dung dịch chứa 15 g U L−1 bằng việc sử dụng tỷ lệ 1:4 của 30% TBP trong kerosen và dung dịch phân tán 0.75 M (NH4)2CO3. Ngoài ra, toàn bộ uranium trong dung dịch tách đã được kết tủa. Do đó, DLM đã chứng minh là một phương pháp chiết xuất dung môi liên quan hấp dẫn cho việc khôi phục và tinh chế uranium.

Từ khóa

#Màng lỏng phân tán #khôi phục uranium #tinh chế uranium #axit nitric #tri-n-butyl phosphate #dung dịch ammonium carbonate

Tài liệu tham khảo

Stassen L, Suthiram J (2015) Initial development of an alkaline process for recovery of uranium from 99Mo production process waste residue. J Radioanal Nucl Chem 305:41–50. https://doi.org/10.1007/s10967-015-3974-z Roy SC, Sonawane SV, Rathore NS, Pabby AK, Janardan P, Changrani RD, Dey PK, Bharadwaj SR (2010) Pseudo-emulsion based hollow fiber strip dispersion technique (PEHFSD): optimization, modelling and application of PEHFSD for recovery of U(VI) from process effluent. Sep Sci Technol 43(11–12):3305–3332. https://doi.org/10.1080/01496390802064141 Carrigan A, Gouzy-Portaix S, Dix J (2015) Feasibility of producing 99Mo on a small scale using fission of low enriched uranium or neutron activation of natural molybdenum. Technical reports series. International Atomic Energy Agency, Vienna Rathore NS, Sastre AM, Pabby AK (2016) Membrane assisted liquid extraction of actinides and remediation of nuclear waste: a review. J Membr Sci Res 2(1):2–13. https://doi.org/10.22079/jmsr.2016.15872 Wang D (1987) Some aspects of the back end of the nuclear fuel cycle in China. In: Back end of the nuclear fuel cycle: strategies and options. International Atomic Energy Agency Hlushak SP, Simonin JP, Caniffi B, Moisy P, Sorel C, Bernard O (2011) Description of partition equilibria for uranyl nitrate, nitric acid and water extracted by tributyl phosphate in dodecane. Hydrometallurgy 109:97–105 Todd T, Law J, Herbst R, Lumetta GJ, Moyer BA (2000) Treatment of radioactive wastes using liquid–liquid extraction technologies—fears, facts, and issues. In: Waste management, Tucson, Arizona, US Maher CJ (2015) Current headend technologies and future developments in the reprocessing of spent nuclear fuels. In: Taylor R (ed) Reprocessing and recycling of spent nuclear fuel, vol 79. Woodhead Publishing, Cambridge, pp 93–124 Klaassen R, Jansen EA (2001) The membrane contactor: environmental applications and possibilities. Environ Prog 20(1):37–43. https://doi.org/10.1002/ep.670200114 Eccles H (2000) Nuclear fuel cycle technologies—sustainable in the twenty first century? Solvent Extr Ion Exch 18(4):633–654. https://doi.org/10.1080/07366290008934701 Srinivasan TG, Vijayasaradhi S, Dhamodaran R, Suresh A, Vasudeva Rao PR (1998) Third phase formation in extraction of thorium nitrate by mixtures of trialkyl phosphates. Solvent Extr Ion Exch 16(4):1001–1011. https://doi.org/10.1080/07366299808934565 Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159(1):61–106. https://doi.org/10.1016/S0376-7388(99)00040-X Pabby AK, Sastre AM (2013) State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Membr Sci 430:263–303. https://doi.org/10.1016/j.memsci.2012.11.060 Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, Dey PK (2007) Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactor. J Membr Sci 300:131–136. https://doi.org/10.1016/j.memsci.2007.05.018 Rathore NS, Sonawane JV, Kumar AK, Venugopalan AK, Singh RK, Bajpai DD, Shukla JP (2001) Hollow fiber supported liquid membrane: a novel technique for separation and recovery of plutonium from aqueous acidic wastes. J Membr Sci 189:119–128. https://doi.org/10.1016/s0376-7388(01)00406-9 Drioli E, Criscuoli A, Curcio E (2006) Membrane contactors: fundamentals, applications and potentialities. Membrane science and technology series, vol 11. Elsevier, Amsterdam Drioli E, Curcio E, di Profio G (2005) State of the art and recent progresses in membrane contactors. Chem Eng Res Des 83(3):223–233. https://doi.org/10.1205/cherd.04203 Drioli E, Stankiewicz AI, Macedonio F (2011) Membrane engineering in process intensification—an overview. J Membr Sci 380(1):1–8. https://doi.org/10.1016/j.memsci.2011.06.043 Sastre AM, Pabby AK (2015) Membrane applications in industrial waste management (including nuclear), environmental engineering and future trends in membrane science. In: Pabby AK, Rizvi SSH, Sastre AM (eds) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. CRC Press, Boca Raton, pp 823–1145 Dixit S, Chinchale R, Govalkar S, Mukhopadhyay S, Shenoy KT, Rao H, Ghosh SK (2013) A mathematical model for size and number scale up of hollow fiber modules for the recovery of uranium from acidic nuclear waste using the DLM technique. Sep Sci Technol 48(16):2444–2453. https://doi.org/10.1080/01496395.2013.807825 Dixit S, Mukhopadhyay S, Govalkar S, Shenoy KT, Rao H, Ghosh SK (2012) A mathematical model for pertraction of uranium in hollow fiber contactor using TBP. Desalin Water Treat 38:195–206. https://doi.org/10.1080/19443994.2012.664359 Bernardo P, Clarizia G (2011) Potential of membrane operations in redesigning industrial processes. The ethylene oxide manufacture. Chem Eng Trans 25(2):617–622 Pabby AK, Swain B, Sastre AM (2017) Recent advances in smart integrated membrane assisted liquid extraction technology. Chem Eng Process Process Intensif 120:27–56. https://doi.org/10.1016/j.cep.2017.06.006 Hu S-YB, Wiencek JM (1998) Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor. AIChE J 44(3):570–581. https://doi.org/10.1002/aic.690440308 Shukla JP, Kumar A, Singh RK, Iyer RH (1996) Separation of radiotoxic actinides from reprocessing wastes with liquid membranes. In: Bartsch RA, Way JD (eds) Chemical separations with liquid membranes. ACS symposium series, vol 642. American Chemical Society, pp 391–408. https://doi.org/10.1021/bk-1996-0642.ch027 Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A (2009) Application of pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) for recovery of Cr(III) from alkaline solutions. Sep Purif Technol 66(3):586–590. https://doi.org/10.1016/j.seppur.2009.01.012 Gonzalez R, Cerpa A, Alguacil FJ (2010) Nickel(II) removal by mixtures of Acorga M5640 and DP8R in pseudo-emulsion based hollow fiber with strip dispersion technology. Chemosphere 81(9):1164–1169. https://doi.org/10.1016/j.chemosphere.2010.08.054 Ho WSW, Wang B, Neumuller TE, Roller J (2001) Supported liquid membranes for removal and recovery of metals from waste waters and process streams. Environ Prog 20(2):117–121. https://doi.org/10.1002/ep.670200215 De Agreda D, Garcia-Diaz I, López F, Alguacil F (2011) Supported liquid membranes technologies in metals removal from liquid effluents. Rev Met 47(2):146–168 Sengupta A, Basu R, Sirkar KK (1988) Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34(10):1698–1708. https://doi.org/10.1002/aic.690341014 Ho WSW (2003) Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion. Ann N Y Acad Sci 984(1):97–122. https://doi.org/10.1111/j.1749-6632.2003.tb05995.x Tkac P, Matteson B, Bruso J, Paulenova A (2008) Complexation of uranium(VI) with acetohydroxamic acid. J Radioanal Nucl Chem 277(1):31–36. https://doi.org/10.1007/s10967-008-0705-8 Mckay HAC (1990) The PUREX process. In: Schulz WW, Bender KP, Burger LL, Navratil JD (eds) Science and technology of tributyl phosphate. CRC Press, Boca Raton, pp 1–9 Kumar JR, Kim J-S, Lee J-Y, Yoon H-S (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125. https://doi.org/10.1080/15422119.2010.549760 Nash KL, Barrans RE, Chiarizia R, Dietz ML, Jensen MP, Rickert PG, Moyer BA, Bonnesen PV, Bryan JC, Sachleben RA (2000) Fundamental investigations of separations science for radioactive materials. Solvent Extr Ion Exch 18(4):605–631. https://doi.org/10.1080/07366290008934700 Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Venugopalan AK, Changrani RD, Dey PK, Venkataramani B (2005) Application of hollow fiber contactor in nondispersive solvent extraction of Pu(IV) by TBP. Sep Sci Technol 40(9):1911–1926. https://doi.org/10.1081/ss-200064546 Musikas C, Schulz WW, Liljenzin J (2004) Solvent extraction in nuclear science and technology. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Solvent extraction principles and practice, revised and expanded. Marcel Dekker, Inc., New York, pp 507–558 Kweto B, Groot DR, Stassen L, Suthiram J, Zeevaart JR (2012) The use of ammonium carbonate as lixiviant in uranium leaching. In: Paper presented at the ALTA, Perth, Australia, 31 May–1 June 2012 Zakrzewska-Trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321:119–130. https://doi.org/10.1016/j.desal.2013.02.022 Singh SK, Misra SK, Sudersanan M, Dakshinamoorthy A, Munshi SK, Dey PK (2007) Carrier-mediated transport of uranium from phosphoric acid medium across TOPO/n-dodecane-supported liquid membrane. Hydrometallurgy 87:190–196. https://doi.org/10.1016/j.hydromet.2007.03.004 Jablonski BB, Leyden DE (1978) Flow photometric monitor for uranium in carbonate solutions. Anal Chem 50(3):404–407. https://doi.org/10.1021/ac50025a012 Hurst FJ, Crouse DJ (1960) Recovery of uranium from di(2-ethylhexyl)phosphoric acid (Dapex) extractant with ammonium carbonate. Oak Ridge National Laboratory Baran V (1982) Ammonium uranyl carbonates—complex compounds with variable coordination number. Collect Czechoslov Chem Commun 47(5):1269–1281. https://doi.org/10.1135/cccc19821269 Davis Jr W (1961) Thermodynamics of extraction of nitric acid by tri-n-butyl phosphate-hydrocarbon diluent solutions (trans: Chemical Technology Division ORNL). U.S. Atomic Energy Commission, Oak Ridge National Laboratory Kotz JC, Treichel PM, Townsend J (2012) Chemistry and chemical reactivity. Cengage Learning, Boston Fedoroff BT, Sheffield OE, Clift GD, Reese EF (1962) Encyclopedia of explosives and related items, vol 2. Army Armament Research Development and Engineering Center, Picatinny Arsenal NJ Warheads Energetics and Combat Support Armaments Center, Morris County Marlair G, Kordek M-A (2005) Safety and security issues relating to low capacity storage of AN-based fertilizers. J Hazard Mater 123(1):13–28. https://doi.org/10.1016/j.jhazmat.2005.03.028 Chaturvedi S, Dave PN (2013) Review on thermal decomposition of ammonium nitrate. J Energ Mater 31(1):1–26. https://doi.org/10.1080/07370652.2011.573523 Bachmann HG, Seibold K, Dokuzoquz HZ, Muller HM (1975) X-ray powder diffraction and some thermodynamic data for (NH4)4[UO2(CO3)3]. J Inorg Nucl Chem 37:735–737. https://doi.org/10.1016/0022-1902(75)80530-6 Awan IZ, Khan AQ (2015) Uranium—the element: its occurrence and uses. J Chem Soc Pak 37(6):1056–1080 Rodden CJ (1950) Analytical chemistry of the Manhattan project, vol 1. McGraw-Hill, New York Johnson DA, Florence TM (1971) Spectrophotometric determination of uranium(VI) with 2-(5-bromo-2-pyridalazo)-5-diethylaminophenol. Anal Chim Acta 53:73–79 Fuwa K, Valle BL (1963) The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer–Lambert law. Anal Chem 35(8):942–946. https://doi.org/10.1021/ac60201a006 Liqui-Cel® M (2017) Datasheets. http://www.liquicel.com/uploads/documents/2%205x8ExtraFlow-D59Rev16%2010-15%20_ke.pdf. Accessed 26 Sep 2017 Fourie M, Meyer WCMH, Van der Westhuizen DJ, Krieg HM (2016) Uranium recovery from simulated molybdenum-99 production residue using non-dispersive membrane based solvent extraction. Hydrometallurgy 164:330–333. https://doi.org/10.1016/j.hydromet.2016.07.001 Paulenova A, Vandegrift GF, Czerwinski KR (2009) Plutonium chemistry in the UREX+ separation processes. Oregon State University Fourie M, Meyer WCMH, Van der Westhuizen DJ, Krieg HM (2017) Influence of radiation on a polypropylene membrane contactor used during MBSX of uranium from nitric acid solutions. In: Paper presented at the uranium 2017 international conference, Swakopmund, Namibia, 11–12 September Fouad EA, Bart HJ (2008) Emulsion liquid membrane extraction of zinc by a hollow-fiber contactor. J Membr Sci 307(2):156–168. https://doi.org/10.1016/j.memsci.2007.09.043 Reis MTA, Carvalho JMR (2004) Modelling of zinc extraction from sulphate solutions with bis(2-ethylhexyl)thiophosphoric acid by emulsion liquid membranes. J Membr Sci 237(1):97–107. https://doi.org/10.1016/j.memsci.2004.02.025 Lee SC, Ahn BS, Lee WK (1996) Mathematical modeling of silver extraction by an emulsion liquid membrane process. J Membr Sci 114(2):171–185. https://doi.org/10.1016/0376-7388(95)00315-0 Whitten KW, Gailey KD (1981) General chemistry with qualitative analysis, 4th edn. Saunders College Publishing, Harcourt Brace College Publishers, Orlando Sonawane JV, Pabby AK, Sastre AM (2007) Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300(1–2):147–155. https://doi.org/10.1016/j.memsci.2007.05.016 D’Elia NA, Dahuron L, Cussler EL (1986) Liquid–liquid extractions with microporous hollow fibers. J Membr Sci 29(3):309–319. https://doi.org/10.1016/s0376-7388(00)81269-7 Rout PC, Sarangi K (2013) A comparative study on extraction of Mo(VI) using both solvent extraction and hollow fiber membrane technique. Hydrometallurgy 133(Supplement C):149–155. https://doi.org/10.1016/j.hydromet.2013.01.005 Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic, New York Jindra J, Škramovský S (1966) Herstellung und wärmeverhalten binärer uranylcarbonate. Collect Czechoslov Chem Commun 31(7):2639–2645. https://doi.org/10.1135/cccc19662639 Amayri S (2002) Charakterisierung und Löslichkeit von Erdalkaliuranylcarbonaten M2[UO2(CO3)3]·xH2O; M: Mg, Ca, Sr, Ba. Forschungszentrum Rossendorf, Rossendorf Leay L, Bower W, Horne G, Wady P, Baidak A, Pottinger M, Nancekievil M, Smith AD, Watson S, Green PR, Lennox B, LaVerne JA, Pimblott SM (2015) Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl Instrum Methods Phys Res B 343:62–69. https://doi.org/10.1016/j.nimb.2014.11.028 Arai Y, Ogino H, Takeuchi M, Kase T, Nakajima Y (2011) Study on cleaning solvents using activated alumina in PUREX process. Proc Radiochim Acta 1(1):71–74. https://doi.org/10.1524/rcpr.2011.0012