Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated

Biology of Metals - Tập 25 - Trang 697-709 - 2012
Theodros Z. Kidane1, Ramin Farhad1, Kyoung Jin Lee1, Abraham Santos1, Eric Russo1, Maria C. Linder1
1Department of Chemistry and Biochemistry, California State University, Fullerton, USA

Tóm tắt

Plasma proteins rather than amino acid chelates are the direct sources of copper for mammalian cells. In continuing studies on the mechanisms by which albumin and transcuprein deliver copper and the potential involvement of CTR1, rates of uptake from these proteins and Cu–histidine were compared in cells with/without CTR1 knockdown or knockout. siRNA knocked down expression of CTR1 mRNA 60–85% in human mammary epithelial and hepatic cell models, but this had little or no effect on uptake of 1 μM Cu(II) attached to pure human albumin or alpha-2-macroglobulin. Mouse embryonic fibroblasts that did/did not express Ctr1 took up Cu(II) bound to albumin about as readily as from the histidine complex at physiological concentrations and by a single saturable process. Uptake from mouse albumin achieved a 2–4-fold higher Vmax (with a lower Km) than from heterologous human albumin. Maximum uptake rates from Cu(I)–histidine were >12-fold higher (with higher Km) than for Cu(II), suggesting mediation by a reductase. The presence of cell surface Cu(II) and Fe(III) reductase activity responding only slightly to dehydroascorbate was verified. Excess Fe(III) inhibited uptake from albumin–Cu(II). Ag(I) also inhibited, but kinetics were not or un-competitive. In general there was little difference in rates/kinetics of uptake in the Ctr1+/+ and −/− cells. Endocytosis was not involved. We conclude that plasma proteins deliver Cu(II) to homologous cells with greater efficiency than ionic copper at physiological concentrations, probably through the mediation of a Steap Cu(II)-reductase, and confirm the existence of an additional copper uptake system in mammalian cells.

Tài liệu tham khảo

Abada P, Howell SB (2010) Regulation of cisplatin cytotoxicity by Cu influx transporters. Metal-Based Drugs 1–9 (article ID 317581) Arredondo M, Munoz P, Mura CV, Nunez MT (2003) DMT1, a physiologically relevant Cu+1 transporter of intestinal cells. Am J Physiol (Cell Physiol) 284:C1525–C1530 Bertinato J, Swist E, Plouffe LJ et al (2008) Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem J 409:731–740 Blair BG, Larson CA, Adams PL et al (2011) Copper transporter 2 regulates endocytosis and controls tumor growth and sensitivity to cisplatin in vivo. Mol Pharmacol 79:157–166 Breslow E (1964) Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin. J Biol Chem 239:3252–3259 Cabrera A, Alonzo E, Chu Y-L et al (2008) Copper binding components of blood plasma and organs, and their responses to influx of large doses of 65Cu, in the mouse. Biometals 21:525–543 Campbell CH, Brown RH, Linder MC (1981) Circulating ceruloplasmin is an important source of copper for normal and malignant cells. Bioch Biophys Acta 678:27–38 Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883 Gercken B, Barnes RM (1991) Determination of lead and other trace element species in blood by size exclusion chromatography and inductively coupled plasma/mass spectrometry. Anal Chem 63:283–287 Gray LA, Kidane TZ, Nguyen A et al (2009) Multiple copper proteins and ferro-oxidases in mouse and human plasma. Biochem J 419:237–245 Knopfel M, Solioz M (2002) Characterization of a cytochrome b558 ferric/cupric reductase from rabbit duodenal brush border membranes. Biochem Biophys Res Comm 291:220–225 Knutson MD (2007) Steap proteins: implications for iron and copper metabolism. Nutr Rev 65:335–340 Kuo Y-M, Zhou B, Cosco D et al (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 98:6836–6841 Lau S, Sarkar B (1971) Ternary coordination complex between human serum albumin, copper(II) and l-histidine. J Biol Chem 246:5938–5943 Lee SH, Lancey R, Montaser A et al (1993) Ceruloplasmin and copper transport during the latter part of gestation in the rat. Proc Soc Exp Biol Med 203:428–439 Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 98:6842–6847 Lee J, Pena MMO, Nose Y et al (2002a) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387 Lee J, Petris MJ, Thiele DJ (2002b) Characterization of mouse embryonic cells deficient in the Ctr1 high affinity copper transporter: identification of a CTR1-independent copper transport system. J Biol Chem 277:40253–40259 Linder MC (1991) Biochemistry of copper. Plenum Publishing, New York Linder MC (2002) Biochemistry and molecular biology of copper in mammals. In: Massoro EJ (ed) Handbook of copper pharmacology and toxicology. Humana Press, Totowa Linder MC (2010) Nutritional biochemistry of copper, with emphasis on the perinatal period. In: Avigliano L, Rossi L (eds) Biochemical aspects of human nutrition. Research Signpost, Trivandrum Linder MC, Zerounian NR, Moriya M et al (2003) Iron and copper homeostasis and intestinal absorption using the CaCO2 cell model. Biometals 16:145–160 Liu NM, Lo LSL, Askary SH et al (2007) Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem 18:597–608 Lutsenko S (2010) Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol 14:211–217 Masuoka J, Hegenauer J, Van Dyke BR et al (1993) Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J Biol Chem 268:21533–21537 Mestek O, Kominkova J, Koplik R, Zima T, Miskusova M, Stern P (2002) Speciation of Cu, Se, Zn and Fe in blood serum of hemodialysed patients. Sb Lek 103:23–27 Moriya M, Ho Y-H, Grana A et al (2008) Copper is taken up efficiently from albumin and alpha-2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol (Cell Physiol) 295:708–721 Musci G, Fraterrigo T, Calabrese L et al (1999) On the lability and functional significance of the type 1 copper pool in ceruloplasmin. J Biol Inorg Chem 4:441–446 Ohgami RS, Campagne DR, McDonald A et al (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394 Olusanya O, Andrews PD, Swedlow JR et al (2001) Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo 11(11):896–900 Owen CA Jr (1971) Metabolism of copper 67 by the copper deficient rat. Am J Physiol 221:1722–1727 Rees EM, Thiele DJ (2007) Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. J Biol Chem 282:21629–21638 Scott KC, Turnlund JR (1994) Compartmental model of copper metabolism in adult men. J Nutr Biochem 5:342–350 Shum SCK, Houk RS (1993) Elemental speciation by anion exchange and size exclusion chromatography with detection by inductively coupled plasma mass spectrometry with direct injection nebulization. Anal Chem 65:2972–2976 Turner JR, Tartakoff AM (1989) The response of the golgi complex to microtubule alterations: The roles of metabolic energy and membrane traffic in golgi complex organization. J Cell Biol 109:2081–2088 Turnlund JR, Keyes WR, Peiffer GL et al (1998) Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 67:1219–1225 van den Berghe PV, Folmer DE, Malingre HE et al (2007) Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J 407:49–59 Vargas JD, Herpers B, McKie AT et al (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta 1651:116–123 Weiss KC, Linder MC (1985) Copper transport in rats, involving a new plasma protein. Am J Physiol Endocrinol Metab 249:E77–E88 Wirth PL, Linder MC (1985) Distribution of copper among components of human serum. J Natl Cancer Inst 75:277–284 Wyman S, Simpson RJ, McKie AT et al (2008) Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 582:1901–1906 Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94:7481–7486