Uptake and retention of molybdenum in cementitious systems

Applied Geochemistry - Tập 119 - Trang 104630 - 2020
Steve Lange1, Martina Klinkenberg1, Juri Barthel2, Dirk Bosbach1, Guido Deissmann1
1Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, Jülich, Germany
2Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C 2), Forschungszentrum Jülich GmbH, Jülich, Germany

Tài liệu tham khảo

Atkins, 1992, Application of Portland cement-based materials to radioactive waste immobilization, Waste Manag., 12, 105, 10.1016/0956-053X(92)90044-J Atkins, 1991, Solubility properties of ternary and quaternary compounds in the calcia-alumina-sulfur trioxide-water system, Cement Concr. Res., 21, 991, 10.1016/0008-8846(91)90058-P Atkins, 1992, Cement hydrate phases: solubility at 25°C, Cement Concr. Res., 22, 241, 10.1016/0008-8846(92)90062-Z Bath, 2003, Radioactive contamination of concrete: uptake and release of radionuclides Baur, 2004, Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate, Cement Concr. Res., 34, 341, 10.1016/j.cemconres.2003.08.016 Beattie, 2012, An overview of near-field evolution research in support of the UK geological disposal programme, Mineral. Mag., 76, 2995, 10.1180/minmag.2012.076.8.15 Bel, 2006, Development of the supercontainer design for deep geological disposal of high-level heat emitting radioactive waste in Belgium, Mater. Res. Soc. Symp. Proc., 932, 10.1557/PROC-932-122.1 Berner, 1992, Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment, Waste Manag., 12, 201, 10.1016/0956-053X(92)90049-O Blanc, 2010, Chemical model for cement based materials: temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases, Cement Concr. Res., 40, 851, 10.1016/j.cemconres.2009.12.004 Blanc, 2010, Chemical model for cement based materials: thermodynamic data assessment for phases other than C–S–H, Cement Concr. Res., 40, 1360, 10.1016/j.cemconres.2010.04.003 Brown, 2018, ENDF/B-VIII.0: the 8th major release of the Nuclear Reaction Data Library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets, 148, 1, 10.1016/j.nds.2018.02.001 Brønsted, 1922, Studies of solubility: IV. The principle of specific interaction of ions, J. Am. Chem. Soc., 44, 877, 10.1021/ja01426a001 Cliff, 1975, The quantitative analysis of thin specimens, J. Mirosc., 103, 203 Deissmann, 2006, Development and application of knowledge-based source-term models for radionuclide mobilisation from contaminated concrete, Mater. Res. Soc. Symp. Proc., 932, 259, 10.1557/PROC-932-99.1 Dosch, 1967, Ein alkalihaltiges calciumaluminatsulfathydrat (Natrium-Monosulfat), Zement-Kalk-Gips, 20, 392 Drace, 2013, A summary of IAEA coordinated research project on cementitious materials for radioactive waste management, 3 Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, 2016, FEI Tecnai G2 F20, J. Large-scale Res. Facil., 2, A77, 10.17815/jlsrf-2-138 Evans, 2008, Binding mechanisms of radionuclides to cement, Cement Concr. Res., 38, 543, 10.1016/j.cemconres.2007.11.004 Giffaut, 2014, Andra thermodynamic database for performance assessment: ThermoChimie, Appl. Geochem., 49, 225, 10.1016/j.apgeochem.2014.05.007 Glasser, 1997, Fundamental aspects of cement solidification and stabilization, J. Hazard Mater., 52, 151, 10.1016/S0304-3894(96)01805-5 Glasser, 2001, Mineralogical aspects of cement in radioactive waste disposal, Mineral. Mag., 65, 621, 10.1180/002646101317018442 Glasser, 2002, Characterisation of the barrier performance of cements, Mater. Res. Soc. Symp. Proc., 713, 10.1557/PROC-713-JJ9.1 Glasser, 2011, Application of inorganic cements to the conditioning and immobilisation of radioactive wastes, 67 Gougar, 1996, Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review, Waste Manag., 16, 295, 10.1016/S0956-053X(96)00072-4 Grambow, 2020, Retention of radionuclides on cementitious systems: main outcome of the CEBAMA project, Appl. Geochem., 112, 104480, 10.1016/j.apgeochem.2019.104480 Grivé, 2015, Thermodynamic data selection applied to radionuclides and chemotoxic elements: an overview of the ThermoChimie-TDB, Appl. Geochem., 55, 85, 10.1016/j.apgeochem.2014.12.017 Guggenheim, 1935, The specific thermodynamic properties of aqueous solutions of strong electrolytes, Philos. Mag. A, 19, 588, 10.1080/14786443508561403 Hawthorne, 2000, The crystal chemistry of sulfate minerals, Rev. Mineral., 40, 1, 10.2138/rmg.2000.40.1 Heath, 2000, 41 Hoch, 2012, Modelling evolution in the near field of a cementitious repository, Mineral. Mag., 76, 3055, 10.1180/minmag.2012.076.8.21 Jantzen, 2010, Cements in waste management, Adv. Cement Res., 22, 225, 10.1680/adcr.2010.22.4.225 Kato, 2002, 56 Kindness, 1994, Immobilization and fixation of molybdenum (VI) by Portland cement, Waste Manag., 14, 97, 10.1016/0956-053X(94)90002-7 Lange, 2019 Lange, 2018, Uptake of 226Ra in cementitious systems: a complementary solution chemistry and atomistic simulation study, Appl. Geochem., 96, 204, 10.1016/j.apgeochem.2018.06.015 Li, 1997, Degradation mechanisms of cement-stabilised wastes by internal sulfate associated with the formation of the U phase, 427 Li, 1996, The U phase formation in cement-based systems containing high amounts of Na2SO4, Cement Concr. Res., 26, 27, 10.1016/0008-8846(95)00189-1 Li, 1997, Synthesis of the U phase (4CaO·0.9Al2O3·1.1SO3·0.5Na2O·16H2O), Cement Concr. Res., 27, 7, 10.1016/S0008-8846(96)00194-9 Lidman, 2017, 27 Ma, 2017, Evidence of multiple sorption modes in layered double hydroxides using Mo as structural probe, Environ. Sci. Technol., 51, 5531, 10.1021/acs.est.7b00946 Marty, 2018, Thermodynamic and crystallographic model for anion uptake by hydrated calcium aluminate (AFm): an example of molybdenum, Sci. Rep., 8, 7943, 10.1038/s41598-018-26211-z Matschei, 2006, The AFm phase in Portland cement, Cement Concr. Res., 37, 118, 10.1016/j.cemconres.2006.10.010 Mondal, 1975, The crystal structure of tricalcium aluminate, Ca3Al2O6, Acta Crystallogr. B, 31, 689, 10.1107/S0567740875003639 Myneni, 1998, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite, Geochem. Cosmochim. Acta, 62, 3499, 10.1016/S0016-7037(98)00221-X Ochs, 2002, Uptake of oxo-anions by cements through solid-solution formation: experimental evidence and modelling, Radiochim. Acta, 90, 639, 10.1524/ract.2002.90.9-11_2002.639 Ochs, 2016, 301 Parkhurst, 2013, 497 Scatchard, 1936, Concentrated solutions of strong electrolytes, Chem. Rev., 19, 309, 10.1021/cr60064a008 Stöber, 2017, Crystallography and crystal chemistry of AFm phases related to cement chemistry, 191 Taylor, 1997, 459 Tits, 2006, The uptake of radium by calcium silicate hydrates and hardened cement paste, Radiochim. Acta, 94, 637, 10.1524/ract.2006.94.9-11.637 Wang, 2013, A new radionuclide sorption data base for benchmark cement accounting for geochemical evolution of cement, 103 Wieland, 2014, 104 Wieland, 2002, 87 Wieland, 1998, Interaction of Eu(III) and Th(IV) with sulfate-resisting portland cement, Mater. Res. Soc. Symp. Proc., 506, 573, 10.1557/PROC-506-573 Zhang, 2000, 172 Zhang, 2003, Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite, Environ. Sci. Technol., 37, 2947, 10.1021/es020969i