Updates on inulinases: Structural aspects and biotechnological applications
Tài liệu tham khảo
Singh, 2010, Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential, Food Technol. Biotechnol., 48, 435
Singh, 2011, Enzymatic preparation of high fructose syrup from inulin, 77
Singh, 2017, Inulinases, vol. 7, 423
Singh, 2019, Microbial inulinases and pullulanases in the food industry, 23
Singh, 2019, Inulinases and pullulanases production from agro-industrial residues, 1
Singh, 2017, Enzymatic approaches for the synthesis of high fructose syrup, 189
Singh, 2017, A panorama of bacterial inulinases: production, purification, characterization and industrial applications, Int. J. Biol. Macromol., 96, 312, 10.1016/j.ijbiomac.2016.12.004
Singh, 2018, Trends in enzymatic synthesis of high fructose syrup, 101
Singh, 2018, Biocatalytic strategies for the production of high fructose syrup from inulin, Bioresour. Technol., 260, 395, 10.1016/j.biortech.2018.03.127
Singh, 2018, Production, purification, characterization and applications of fungal inulinases, Curr. Biotechnol., 7, 242, 10.2174/2211550105666160512142330
Singh, 2016, Recent insights in enzymatic synthesis of fructooligosaccharides from inulin, Int. J. Biol. Macromol., 85, 565, 10.1016/j.ijbiomac.2016.01.026
Singh, 2020, Fungal endoinulinase production from raw Asparagus inulin for the production of fructooligosaccharides, Bioresourse Technol. Rep., 10, 100417, 10.1016/j.biteb.2020.100417
Singh, 2019, Biotechnological applications of inulin-rich feedstocks, Bioresour. Technol., 273, 641, 10.1016/j.biortech.2018.11.031
Pouyez, 2012, First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: Discovery of an extra-pocket in the catalytic domain responsible for its endo-activity, Biochimie, 94, 2423, 10.1016/j.biochi.2012.06.020
Arand, 2002, Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori, Biochem. J., 362, 131, 10.1042/bj3620131
Nagem, 2004, Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition, J. Mol. Biol., 344, 471, 10.1016/j.jmb.2004.09.024
Ma, 2019, Unique N-glycosylation of a recombinant exo-inulinase from Kluyveromyces cicerisporus and its effect on enzymatic activity and thermostability, J. Biol. Eng., 13, 81, 10.1186/s13036-019-0215-y
Zherebtsov, 1999, On the mechanism of the catalytic effect of carbohydrases: A review, Appl. Biochem. Microbiol., 35, 107
Zherebtsov, 2003, Identification of catalytically active groups in inulinase from Bacillus polymyxa 722, Appl. Biochem. Microbiol., 39, 544, 10.1023/A:1026266031655
Goosen, 2007
Arjomand, 2017, The importance of the non-active site and non-periodical structure located histidine residue respect to the structure and function of exo-inulinase, Int. J. Biol. Macromol., 98, 542, 10.1016/j.ijbiomac.2017.01.130
Chikkerur, 2018, In Silico evaluation and identification of fungi capable of producing endo-inulinase enzyme, PLoS One, 13, e0200607, 10.1371/journal.pone.0200607
Park, 2003, Trp17 and Glu20 residues in conserved WMN (D/E) PN motif are essential for Aspergillus ficuum endoinulinase (EC 3.2. 1.7) activity, Biochem. Mosc., 68, 658, 10.1023/A:1024669810540
Vandamme, 2013, Asparagine 42 of the conserved endo-inulinase INU2 motif WMNDPN from Aspergillus ficuum plays a role in activity specificity, FEBS Open Bio., 3, 467, 10.1016/j.fob.2013.10.009
Singh, 2012, Molecular modeling and docking of microbial inulinases towards perceptive enzyme-substrate interactions, Indian J. Microbiol., 52, 373, 10.1007/s12088-012-0248-0
Basso, 2010, Endo-and exo-inulinases: Enzyme-substrate interaction and rational immobilization, Biotechnol. Prog., 26, 397
Brevnova, 1998, Inulinase-secreting strain of Saccharomyces cerevisiae produces fructose, Biotechnol. Bioeng., 60, 492, 10.1002/(SICI)1097-0290(19981120)60:4<492::AID-BIT11>3.0.CO;2-K
Yu, 2011, Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain, Biotechnol. Lett., 33, 147, 10.1007/s10529-010-0414-6
Ferreira, 1991, Properties of a thermostable nonspecific fructofuranosidase produced by Cladosporium cladosporioides cells for hydrolysis of Jerusalem artichoke extract, Appl. Biochem. Biotechnol., 31, 1, 10.1007/BF02922120
De Andrade, 1992, Selective fructose production by utilization of glucose liberated during the growth of Cladosporium cladosporioides on inulin or sucrose, Carbohydr. Polym., 18, 59, 10.1016/0144-8617(92)90188-V
Sirisansaneeyakul, 2007, Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii, World J. Microbiol. Biotechnol., 23, 543, 10.1007/s11274-006-9258-6
Mutanda, 2009, Controlled production of fructose by an exoinulinase from Aspergillus ficuum, Appl. Biochem. Biotechnol., 159, 65, 10.1007/s12010-008-8479-6
Gupta, 1989, Fructose and inulinase production from waste Cichorium intybus roots, Biol. Wastes, 29, 73, 10.1016/0269-7483(89)90105-5
Ongen-Baysal, 1996, Production of inulinase by mixed culture of Aspergillus niger and Kluyveromyces marxianus, Biotechnol. Lett., 18, 1431, 10.1007/BF00129349
Cruz, 1998, Production and action pattern of inulinase from Aspergillus niger-245: Hydrolysis of inulin from several sources, Rev. Argent. Microbiol., 29, 301, 10.1590/S0001-37141998000400013
Manzoni, 1992, Hydrolysis of topinambur (Jerusalem artichoke) fructans by extracellular inulinase of Kluyveromyces marxianus var. bulgaricus, J. Chem. Technol. Biotechnol., 54, 311, 10.1002/jctb.280540402
Singh, 2007, Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup, J. Microbiol. Biotechnol., 17, 733
Zhang, 2019, Inulinase hyperproduction by Kluyveromyces marxianus through codon optimization, selection of the promoter and high-cell-density fermentation for efficient inulin hydrolysis, Annal. Microbiol., 69, 647, 10.1007/s13213-019-01457-8
Singh, 2018, Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin, Int. J. Biol. Macromol., 118, 1974, 10.1016/j.ijbiomac.2018.07.040
Prangviset, 2018, Fructose production from Jerusalem artichoke using mixed inulinases, Agric. Natural Resour., 52, 132, 10.1016/j.anres.2018.08.001
Yousefi-Mokri, 2019, Enzymatic hydrolysis of inulin by an immobilized extremophilic inulinase from the halophile bacterium Alkalibacillus filiformis, Carbohydr. Res., 483, 107746, 10.1016/j.carres.2019.107746
Kamble, 2018, Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no. 1, J. Microbiol. Methods, 149, 55, 10.1016/j.mimet.2018.04.019
Hang, 2018, Design and properties of an immobilization enzyme system for inulin conversion, Appl. Biochem. Biotechnol., 184, 453, 10.1007/s12010-017-2558-5
Santa, 2011, From inulin to fructose syrup using sol-gel immobilized inulinase, Appl. Biochem. Biotechnol., 165, 1, 10.1007/s12010-011-9228-9
Trivedi, 2015, Rapid and efficient bioconversion of chicory inulin to fructose by immobilized thermostable inulinase from Aspergillus tubingensis CR16, Bioresour. Bioprocess., 2, 32, 10.1186/s40643-015-0060-x
Kamble, 2019, Enhanced inulinase production by Fusarium solani JALPK from invasive weed using response surface methodology, J. Microbiol. Meth., 99, 99, 10.1016/j.mimet.2019.02.021
Garcia-Aguirre, 2009, Strategy for biotechnological process design applied to the enzymatic hydrolysis of agave fructo-oligosaccharides to obtain fructose-rich syrups, J. Agr. Food Chem., 57, 10205, 10.1021/jf902855q
Singh, 2007, Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1, J. Ind. Microbiol. Biot., 34, 649, 10.1007/s10295-007-0237-1
Holyavka, 2018, Efficient fructose production from plant extracts by immobilized inulinases from Kluyveromyces marxianus and Helianthus tuberosus, Int. J. Biol. Macromol., 115, 829, 10.1016/j.ijbiomac.2018.04.107
Singh, 2017, Immobilization of yeast on chitosan beads for the hydrolysis of inulin in a batch system, Int. J. Biol. Macromol., 95, 87, 10.1016/j.ijbiomac.2016.11.030
Singh, 2019, Fructose production from inulin using fungal inulinase immobilized on 3-aminopropyl-triethoxysilane functionalized multiwalled carbon nanotubes, Int. J. Biol. Macromol., 125, 41, 10.1016/j.ijbiomac.2018.11.281
Singh, 2019, Immobilization of inulinase on aminated multiwalled carbon nanotubes by glutaraldehyde cross-linking for the production of fructose, Catal. Lett., 149, 2718, 10.1007/s10562-019-02743-5
Singh, 2019, Immobilization of fungal inulinase on hetero-functionalized carbon nanofibers for the production of fructose from inulin, LWT Food Sci. Technol., 116, 10.1016/j.lwt.2019.108569
Singh, 2020, Functionalization of multiwalled carbon nanotubes for enzyme immobilization, vol. 630, 25, 10.1016/bs.mie.2019.10.014
Sheldon, 2013, Enzyme immobilization in biocatalysis: Why, what and how, Chem. Soc. Rev., 42, 6223, 10.1039/C3CS60075K
Liese, 2013, Evaluation of immobilized enzymes for industrial applications, Chem. Soc. Rev., 42, 6236, 10.1039/c3cs35511j
Mateo, 2007, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzym. Microb. Technol., 40, 1451, 10.1016/j.enzmictec.2007.01.018
Fernandez-Lafuente, 2009, Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation, Enzym. Microb. Technol., 45, 405, 10.1016/j.enzmictec.2009.08.009
Rodrigues, 2013, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev., 42, 6290, 10.1039/C2CS35231A
Hernandez, 2011, Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzym. Microb. Technol., 48, 107, 10.1016/j.enzmictec.2010.10.003
Iyer, 2008, Enzyme stability and stabilization-aqueous and non-aqueous environment, Process Biochem., 43, 1019, 10.1016/j.procbio.2008.06.004
Bajpai, 1985, Production of high fructose syrup from Jerusalem artichoke tubers using Kluyveromyces marxianus cells immobilized in agar gel, J. Gen. Appl. Microbiol., 31, 305, 10.2323/jgam.31.305
Hang, 2020, Immobilized inulinase for the continuous conversion of inulin in the fluidized-bed reactor, Catal. Lett., 150, 1849, 10.1007/s10562-020-03122-1
Holyavka, 2019, Immobilization of inulinase on KU-2 ion-exchange resin matrix, Int. J. Biol. Macromol., 138, 681, 10.1016/j.ijbiomac.2019.07.132
Kim, 1989, Fructose production from Jerusalem artichoke by inulinase immobilized on chitin, Biotechnol. Lett., 11, 201, 10.1007/BF01026059
Mohammadi, 2019, Inulinase immobilized gold-magnetic nanoparticles as a magnetically recyclable biocatalyst for facial and efficient inulin biotransformation to high fructose syrup, Int. J. Biol. Macromol., 123, 846, 10.1016/j.ijbiomac.2018.11.160
Parekh, 1986, Continuous hydrolysis of fructans in Jerusalem artichoke extracts using immobilized nonviable cells of Kluyveromyces marxianus, J. Food Sci., 51, 854, 10.1111/j.1365-2621.1986.tb13955.x
Gupta, 1992, A comparison of properties of inulinases of Fusarium oxysporum immobilized on various supports, J. Chem. Technol. Biotechnol., 53, 293, 10.1002/jctb.280530310
Torabizadeh, 2018, Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates, Biotechnol. Rep., 17, 97, 10.1016/j.btre.2018.02.004
Rawat, 2017, Continuous generation of fructose from Taraxacum officinale tap root extract and inulin by immobilized inulinase in a packed-bed reactor, Biocatal. Agric. Biotechnol., 9, 134, 10.1016/j.bcab.2016.11.007
Karimi, 2016, Immobilization of inulinase from Aspergillus niger on octadecyl substituted nanoporous silica: Inulin hydrolysis in a continuous mode operation, Biocatal. Agric. Biotechnol., 7, 174, 10.1016/j.bcab.2016.06.001
Yewale, 2013, Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis, Biocatal. Agric. Biotechnol., 2, 96, 10.1016/j.bcab.2013.01.001
Anes, 2014, Towards the continuous production of fructose syrup from inulin using inulinase entrapped in PVA-based particles, Biocatal. Agric. Biotechnol., 3, 296, 10.1016/j.bcab.2013.11.006
Ricca, 2010, Fructose production by inulinase covalently immobilized on sepabeads in batch and fluidized bed bioreactor, Int. J. Mol. Sci., 11, 1180, 10.3390/ijms11031180
Singh, 2008, Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin, J. Ind. Microbiol. Biotechnol., 35, 777, 10.1007/s10295-008-0348-3
Garuba, 2018, Immobilization of thermostable exo-inulinase from mutant thermophilic Aspergillus tamarii-U4 using kaolin clay and its application in inulin hydrolysis, J. Genet. Eng. Biotechnol., 16, 341, 10.1016/j.jgeb.2018.03.009
Kim, 1997, Continuous production of fructose-syrup from inulin by immobilized inulinase from recombinant Saccharomyces cerevisiae, Biotechnol. Bioproc. E, 2, 90, 10.1007/BF02932331
Bajpai, 1985, Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: 1. Preparation and enzymatic properties, Enz. Microb. Technol., 7, 373, 10.1016/0141-0229(85)90125-5
Wenling, 1999, Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85, Process Biochem., 34, 643, 10.1016/S0032-9592(98)00140-X
Bali, 2015, Fructo-oligosaccharides: Production, purification and potential applications, Crit. Rev. Food Sci. Nutr., 55, 1475, 10.1080/10408398.2012.694084
Mutanda, 2008, Response surface methodology: Synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger, Enzy. Microb. Technol., 43, 362, 10.1016/j.enzmictec.2008.06.005
Silva, 2013, Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyveromyces marxianus NRRL Y-7571 in aqueous-organic medium, Food Chem., 138, 148, 10.1016/j.foodchem.2012.09.118
Picazo, 2019, Production of an enzymatic extract from Aspergillus oryzae DIA-MF to improve the fructooligosaccharides profile of Aguamiel, Front. Nutr., 6, 15, 10.3389/fnut.2019.00015
Zhengyu, 2005, Production of inulooligosaccharides by endoinulinases from Aspergillus ficuum, Food Res. Int., 38, 301, 10.1016/j.foodres.2004.04.011
Chikkerur, 2020, Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase, Appl. Biochem. Biotechnol., 191, 695, 10.1007/s12010-019-03215-7
Park, 1998, Enzymatic production of inulo-oligosaccharides from chicory juice, Biotechnol. Lett., 20, 385, 10.1023/A:1005383415013
Kim, 1997, Production of inulo-oligosaccharides using endo-inulinase from a Pseudomonas sp, Biotechnol. Lett., 19, 369, 10.1023/A:1018311219788
Jiang, 2019, One-step bioprocess of inulin to product inulo-oligosaccharides using Bacillus subtilis secreting an extracellular endo-inulinase, Appl. Biochem. Biotechnol., 187, 116, 10.1007/s12010-018-2806-3
Yun, 1999, Production of inulo-oligosaccharides from inulin by recombinant E. coli containing endoinulinase activity, Bioprocess Eng., 21, 101
Yun, 1999, Microbial production of inulo-oligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli, J. Biosci. Bioeng., 87, 291, 10.1016/S1389-1723(99)80034-6
Bao, 2019, Identification, soluble expression and characterization of a novel endo-inulinase from Lipomyces starkeyi NRRL Y-11557, Int. J. Biol. Macromol., 137, 537, 10.1016/j.ijbiomac.2019.06.096
Jiang, 2019, Efficient production of inulooligosaccharides from inulin by endoinulinase from Aspergillus arachidicola, Carbohyd. Polym., 208, 70, 10.1016/j.carbpol.2018.12.053
Afriat-Jurnou, 2018, Directed evolution of an endoinulinase from Talaromyces purpureogenus toward efficient production of inulooligosaccharides, Biotechnol. Prog., 34, 868, 10.1002/btpr.2618
He, 2014, Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production, J. Indus. Microbiol. Biotechnol., 41, 105, 10.1007/s10295-013-1341-z
Kim, 2006, Inulooligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase, J. Microbiol. Biotechnol., 16, 360
Wang, 2016, A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast, Carbohydr. Polym., 151, 1220, 10.1016/j.carbpol.2016.06.059
Han, 2017, High-efficient production of fructo-oligosaccharides from inulin by a two-stage bioprocess using an engineered Yarrowia lipolytica strain, Carbohydr. Polym., 173, 592, 10.1016/j.carbpol.2017.06.043
Yokota, 1995, Production of inulotriose from inulin by inulin-degrading enzyme from Streptomyces rochei E87, Lett. Appl. Microbiol., 21, 330, 10.1111/j.1472-765X.1995.tb01072.x
Cho, 2002, Purification and characterization of an endoinulinase from Xanthomonas oryzae No. 5, Process Biochem., 37, 1325, 10.1016/S0032-9592(02)00018-3
Cho, 2001, Production of inulooligosaccharides from chicory extract by endoinulinase from Xanthomonas oryzae no. 5, Enz. Microb. Technol., 28, 439, 10.1016/S0141-0229(00)00341-0
Park, 1999, Production of inulooligosaccharides from inulin by a novel endoinulinase from Xanthomonas sp, Biotechnol. Lett., 21, 1043, 10.1023/A:1005632526442
Yun, 2000, Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase, Bioprocess Biosyst. Eng., 22, 189, 10.1007/s004490050718
Yun, 1997, Production of inulo-oligosaccharides from inulin by immobilized endoinulinase from Pseudomonas sp, J. Ferment. Bioeng., 84, 369, 10.1016/S0922-338X(97)89263-X
Nguyen, 2011, Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase, Process Biochem., 46, 298, 10.1016/j.procbio.2010.08.028
Trytek, 2015, An efficient method for the immobilization of inulinase using new types of polymers containing epoxy groups, J. Ind. Microbiol. Biotechnol., 42, 985, 10.1007/s10295-015-1619-4
Chi, 2009, Inulinase-expressing microorganisms and applications of inulinases, Appl. Microbiol. Biotechnol., 82, 211, 10.1007/s00253-008-1827-1
Neagu, 2012, Comparative study of different methods of hydrolysis and fermentation for bioethanol obtaining from inulin and inulin rich feedstock, Sci. Study Res: Chem. Chemical Eng., 13, 63
Ujor, 2015, Butanol production from inulin-rich chicory and Taraxacumkok-saghyz extracts: Determination of sugar utilization profile of Clostridium saccharobutylicum P262, Ind. Crop. Prod., 76, 739, 10.1016/j.indcrop.2015.07.045
Szambelan, 2004, Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers, Biotechnol. Lett., 26, 845, 10.1023/B:BILE.0000025889.25364.4b
Yuan, 2010, Ethanol production from Jerusalem artichoke by SSF fermentation using Kluyveromyces cicerisporus, J. Biotechnol., 150, 367, 10.1016/j.jbiotec.2010.09.435
Margaritis, 1982, Continuous ethanol production from Jerusalem artichoke tubers. I. Use of free cells of Kluyveromyces marxianus, Biotechnol. Bioeng., 24, 1473, 10.1002/bit.260240702
Margaritis, 1982, Continuous ethanol production from Jerusalem artichoke tubers. II. Use of immobilized cells of Kluyveromyces marxianus, Biotechnol. Bioeng., 24, 1483, 10.1002/bit.260240703
Bajpai, 1986, Ethanol production from Jerusalem artichoke juice using flocculent cells of Kluyveromyces marxianus, Biotechnol. Lett., 8, 361, 10.1007/BF01040867
Gao, 2015, Efficient ethanol production from inulin by two-stage aerate strategy, Biomass Bioenergy, 80, 10, 10.1016/j.biombioe.2015.04.013
Kim, 2013, Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555, Appl. Biochem. Biotechnol., 169, 1531, 10.1007/s12010-013-0094-5
Charoensopharat, 2015, Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing, Antonie Leeuwenhoek, 108, 173, 10.1007/s10482-015-0476-5
Yuan, 2008, Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater, J. Appl. Microbiol., 105, 2076, 10.1111/j.1365-2672.2008.03903.x
Hu, 2012, Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing, Appl. Microbiol. Biotechnol., 95, 1359, 10.1007/s00253-012-4240-8
Galindo-Leva, 2016, Growth, ethanol production and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799, J. Indus. Microbiol. Biotechnol., 43, 927, 10.1007/s10295-016-1771-5
Chang, 2008, Ethanol production from Jerusalem artichoke juice using self-flocculating yeast, J. Biotechnol., 136, 272, 10.1016/j.jbiotec.2008.07.582
Duvnjak, 1991, Production of sorbitol and ethanol from Jerusalem artichokes by Saccharomyces cerevisiae ATCC 36859, Appl. Microbiol. Biotechnol., 35, 711, 10.1007/BF00169882
Matias, 2015, Optimization of ethanol fermentation of Jerusalem artichoke tuber juice using simple technology for a decentralised and sustainable ethanol production, Energy Sustain. Develop., 25, 34, 10.1016/j.esd.2014.12.009
Ge, 2005, A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers, Food Technol. Biotechnol., 43, 241
Song, 2017, Simultaneous production of bioethanol and value-added D-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers, Bioresour. Technol., 244, 1068, 10.1016/j.biortech.2017.08.079
Lim, 2011, Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis, Bioresour. Technol., 102, 2109, 10.1016/j.biortech.2010.08.044
Li, 2016, Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk, Bioresour. Technol., 221, 188, 10.1016/j.biortech.2016.09.021
Khatun, 2017, Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display, J. Ind. Microbiol. Biotechnol., 44, 295, 10.1007/s10295-016-1881-0
Liu, 2014, Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin, Appl. Microbiol. Biotechnol., 98, 9129, 10.1007/s00253-014-6079-7
Wang, 2011, 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol, Biomass Bioenergy, 35, 3032, 10.1016/j.biombioe.2011.04.003
Wang, 2014, Direct production of bioethanol from Jerusalem artichoke inulin by gene-engineering Saccharomyces cerevisiae 6525 with exoinulinase gene, Plant Biosyst., 148, 133, 10.1080/11263504.2013.856961
Wang, 2016, Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing, Biotechnol. Biofuels., 9, 96, 10.1186/s13068-016-0511-4
Wang, 2015, Bioethanol production from the dry powder of Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae in simultaneous saccharification and fermentation, J. Ind. Microbiol. Biotechnol., 42, 543, 10.1007/s10295-014-1572-7
Zhou, 2016, Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module, Appl. Microbiol. Biotechnol., 100, 8063, 10.1007/s00253-016-7587-4
Hong, 2015, Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase, Bioprocess Biosyst. Eng., 38, 263, 10.1007/s00449-014-1265-7
Li, 2013, Ethanol production from inulin and unsterilized meal of Jerusalem artichoke tubers by Saccharomyces sp. W0 expressing the endo-inulinase gene from Arthrobacter sp, Bioresour. Technol., 147, 254, 10.1016/j.biortech.2013.08.043
Zhang, 2010, Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin, Microbial Biotechnol., 3, 576, 10.1111/j.1751-7915.2010.00175.x
Zhang, 2015, Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production, Mol. Biotechnol., 57, 337, 10.1007/s12033-014-9827-0
Onsoy, 2007, Ethanol production from Jerusalem artichoke by Zymomonas mobilis in batch fermentation, KMITL, Sci. Tech. J., 7, 55
Szambelan, 2003, The influence of selected microorganisms on ethanol yield from Jerusalem artichoke (Helianthus tuberosus L.) tubers, Pol. J. Food Nut. Sci., 12, 49
Sarchami, 2014, Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production, Biomass Bioenergy, 69, 175, 10.1016/j.biombioe.2014.07.018
Marchal, 1985, Industrial optimization of acetone butanol fermentation: A study of the utilization of Jerusalem artichokes, Appl. Microbiol. Biotechnol., 23, 92, 10.1007/BF00938959
Chen, 2010, Butanol production from hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7, Chin. J. Biotechnol., 26, 991
Huang, 2011, Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor, Bioresour. Technol., 102, 3923, 10.1016/j.biortech.2010.11.112
Wang, 2013, Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid, Bioprocess Biosyst. Eng., 36, 1759, 10.1007/s00449-013-0951-1
Liu, 2010, Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase, Metabolic. Eng., 12, 469, 10.1016/j.ymben.2010.04.004
Liu, 2013, Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin, Mar. Biotechnol., 15, 26, 10.1007/s10126-012-9452-5
Rakicka, 2019, Production of high titer of citric acid from inulin, BMC Biotechnol., 19, 10.1186/s12896-019-0503-0
Kim, 1992, Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase, Biotechnol. Bioeng., 39, 336, 10.1002/bit.260390312
Qiu, 2017, Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S, Bioresour. Technol., 239, 197, 10.1016/j.biortech.2017.05.005
Wang, 2013, Jerusalem artichoke powder: A useful material in producing high-optical-purity L-lactate using an efficient sugar utilizing thermophilic Bacillus coagulans strain, Bioresour. Technol., 130, 174, 10.1016/j.biortech.2012.11.144
Zheng, 2018, Enhanced inulin saccharification by self-produced inulinase from a newly isolated Penicillium sp. and its application in D-lactic acid production, Appl. Biochem. Biotechnol., 186, 122, 10.1007/s12010-018-2730-6
Bae, 2018, Direct fermentation of Jerusalem artichoke tuber powder for production of L-lactic acid and D-lactic acid by metabolically engineered Kluyveromyces marxianus, J. Biotechnol., 266, 27, 10.1016/j.jbiotec.2017.12.001
Ge, 2010, Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism, J. Microbiol. Biotechnol., 20, 101, 10.4014/jmb.0905.05032
Ge, 2009, Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp, Bioresour. Technol., 100, 1872, 10.1016/j.biortech.2008.09.049
Choi, 2012, Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis, Bioresour. Technol., 114, 745, 10.1016/j.biortech.2012.03.075
Petrova, 2015, Direct conversion of chicory flour into L (+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505, Bioresour. Technol., 186, 329, 10.1016/j.biortech.2015.03.077
Xu, 2016, Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus, Bioprocess Biosyst. Eng., 39, 1749, 10.1007/s00449-016-1650-5
Baston, 2012, Selection of lactic acid bacteria able to ferment inulin hydrolysates, vol. 36, 31
Shi, 2012, Efficient production of L-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors, Enz. Microb. Technol., 51, 263, 10.1016/j.enzmictec.2012.07.007
Xia, 2017, Economic co-production of poly (malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D, BMC Biotechnol., 17, 20, 10.1186/s12896-017-0340-y
Qiu, 2019, Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing, Bioprocess Biosyst. Eng., 42, 1711, 10.1007/s00449-019-02167-w
Liang, 2012, Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor, Bioprocess Biosyst. Eng., 35, 915, 10.1007/s00449-011-0676-y
Gunnarsson, 2014, Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z, Ind. Crop. Prod., 62, 125, 10.1016/j.indcrop.2014.08.023
Gao, 2007, Single-cell proteins production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis, Appl. Microbiol. Biotechnol., 77, 825, 10.1007/s00253-007-1210-7
Zhao, 2010, Single cell protein production from yacon extract using a highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a and its nutritive analysis, Bioprocess Biosyst. Eng., 33, 549, 10.1007/s00449-009-0376-z
Cui, 2011, Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene, Process Biochem., 46, 1442, 10.1016/j.procbio.2011.03.017
Zhao, 2011, Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells, Bioresour. Technol., 102, 6128, 10.1016/j.biortech.2011.02.077
Wang, 2018, Single cell oil production from hydrolysates of inulin by a newly isolated yeast Papiliotrema laurentii AM113 for biodiesel making, Appl. Biochem. Biotechnol., 184, 168, 10.1007/s12010-017-2538-9
Li, 2018, Overexpression of an inulinase gene in an oleaginous yeast, Aureobasidium melanogenum P10, for efficient lipid production from inulin, J. Mol. Microbiol. Biotechnol., 28, 190, 10.1159/000493139
Wang, 2014, Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5, Bioresour. Technol., 161, 131, 10.1016/j.biortech.2014.03.038
Zhao, 2010, Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a, Process Biochem., 45, 1121, 10.1016/j.procbio.2010.04.002
Shi, 2018, Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system, App. Microbio. Biotechnol., 102, 9541, 10.1007/s00253-018-9366-x
Zhao, 2010, Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin containing materials, Metab. Eng., 12, 510, 10.1016/j.ymben.2010.09.001
Saha, 2006, Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693, Enz. Microb. Technol., 39, 991, 10.1016/j.enzmictec.2006.02.001
Xia, 2017, Economic co-production of poly (malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D, BMC Biotechnol., 17, 20, 10.1186/s12896-017-0340-y
Ma, 2015, Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin, Mar. Biotechnol., 17, 511, 10.1007/s10126-015-9638-8
Wei, 2001, Intergeneric protoplast fusion between Kluyveromyces and Saccharomyces cerevisiae to produce sorbitol from Jerusalem artichokes, Biotechnol. Lett., 23, 799, 10.1023/A:1010310601876
Fages, 1986, 2, 3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12 321. Optimization of kLa profile, Appl. Microbiol. Biotechnol., 25, 197, 10.1007/BF00253648
Sun, 2009, Microbial production of 2, 3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumonia, Appl. Microbiol. Biotechnol., 82, 847, 10.1007/s00253-008-1823-5
Li, 2010, A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2, 3-butanediol by Klebsiella pneumonia, Bioresour. Technol., 101, 8342, 10.1016/j.biortech.2010.06.041
Gao, 2010, Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2, 3-butanediol, Bioresour. Technol., 101, 7076, 10.1016/j.biortech.2010.03.143
Park, 2017, Enhancement of 2, 3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity, J. Ind. Microbiol. Biotechnol., 44, 1107, 10.1007/s10295-017-1932-1
Yu, 2020, One-step utilization of inulin for docosahexaenoic acid (DHA) production by recombinant Aurantiochytrium sp. carrying Kluyveromyces marxianus inulinase, Bioprocess Biosyst. Eng., 10.1007/s00449-020-02371-z