Update Mukoviszidose

Springer Science and Business Media LLC - Tập 62 - Trang 981-994 - 2022
Olaf Sommerburg1,2, Mark Oliver Wielpütz2,3
1Sektion für Pädiatrische Pneumologie, Allergologie und Mukoviszdose-Zentrum, Zentrum für Kinder- und Jugendmedizin, Klinik III, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
2Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
3Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland

Tóm tắt

Die Mukoviszidose (syn.: zystische Fibrose [CF]) ist eine durch Varianten im CFTR(„cystic fibrosis transmembrane conductance regulator“)-Gen bedingte Multiorganerkrankung. 90 % der Morbidität und Mortalität werden durch die Lungenbeteiligung verursacht. Die mittlere Lebenserwartung von Patienten mit CF betrug in Deutschland im Jahr 2020 mehr als 52 Jahre. Durch die Einführung des Neugeborenenscreenings (NGS) auf CF und die Entwicklung einer kausal wirkenden CFTR-Modulator-Therapie hat sich die Prognose dieser Patienten deutlich verbessert. Der vorliegende Artikel beschreibt einleitend wichtige Aspekte der CF-Erkrankung, um in diesem Zusammenhang auch auf die Spezifika des im Jahr 2016 in Deutschland eingeführten CF-NGS einzugehen.

Tài liệu tham khảo

Sommerburg O, Stahl M, Hammerling S, Gramer G, Muckenthaler MU, Okun J et al (2022) Final results of the southwest German pilot study on cystic fibrosis newborn screening—Evaluation of an IRT/PAP protocol with IRT-dependent safety net. J Cyst Fibros 21(3):422–433 Deutsches Mukoviszidose-Register (202) Berichtsband 2020. https://www.muko.info/fileadmin/user_upload/angebote/qualitaetsmanagement/register/berichtsbaende/Berichtsband_2020.pdf. Zugegriffen: 28. Juni 2022 Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073 Database CFM Cystic fibrosis mutation database. http://www.genet.sickkids.on.ca/Home.html. Zugegriffen: 28. Juni 2022 Mall MA, Boucher RC (2014) Pathophysiology of cystic fibrosis lung disease. In: Mall MA, Elborn JS (Hrsg) Cystic fibrosis. ERS monograph. European Respiratory Society, Sheffield, S 1–13 Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16(1):45–56 Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180(2):146–152 Wielputz MO, Puderbach M, Kopp-Schneider A, Stahl M, Fritzsching E, Sommerburg O et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189(8):956–965 Sommerburg O, Wielputz MO, Trame JP, Wuennemann F, Opdazaite E, Stahl M et al (2020) Magnetic resonance imaging detects chronic rRhinosinusitis in infants and preschool children with cystic fibrosis. Ann Am Thorac Soc 17(6):714–723 van der Doef HP, Kokke FT, van der Ent CK, Houwen RH (2011) Intestinal obstruction syndromes in cystic fibrosis: meconium ileus, distal intestinal obstruction syndrome, and constipation. Curr Gastroenterol Rep 13(3):265–270 Moran A, Dunitz J, Nathan B, Saeed A, Holme B, Thomas W (2009) Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care 32(9):1626–1631 Debray D, Kelly D, Houwen R, Strandvik B, Colombo C (2011) Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros 10(Suppl 2):S29–S36 Plant B, Parkins MD (2014) Extrapulmonary manifestations of cystic fibrosis. In: Mall MA, Elborn JS (Hrsg) Cystic Fibrosis. ERS Monograph. European Respiratory Society, Sheffield, S 219–235 Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL et al (2005) Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab 90(3):1888–1896 Sommerburg O (2019) Mukoviszidose – immer bessere Perspektive durch lebenslange adäquate Behandung. Pneumonews 11(1):2–10 Crossley JR, Smith PA, Edgar BW, Gluckman PD, Elliott RB (1981) Neonatal screening for cystic fibrosis, using immunoreactive trypsin assay in dried blood spots. Clin Chim Acta 113(2):111–121 Munck A, Dhondt JL, Sahler C, Roussey M (2008) Implementation of the French nationwide cystic fibrosis newborn screening program. J Pediatr 153(2):228–233 GemeinsamerBundesausschuss Kinder-Richtlinie: Änderung des Beschlusses zur Neufassung – Screening auf Mukoviszidose (Zystische Fibrose) – Tragende Gründe zum Beschluss 2015 (updated 20.08.2015). https://www.g-ba.de/informationen/beschluesse/2316/. Zugegriffen: 04.10.2022 Gesetz über genetische Untersuchungen bei Menschen (Gendiagnostikgesetz – GenDG) (2009) Sarles J, Berthezene P, Le LC, Somma C, Perini JM, Catheline M et al (2005) Combining immunoreactive trypsinogen and pancreatitis-associated protein assays, a method of newborn screening for cystic fibrosis that avoids DNA analysis. J Pediatr 147(3):302–305 Sommerburg O, Lindner M, Muckenthaler M, Kohlmueller D, Leible S, Feneberg R et al (2010) Initial evaluation of a biochemical cystic fibrosis newborn screening by sequential analysis of immunoreactive trypsinogen and pancreatitis-associated protein (IRT/PAP) as a strategy that does not involve DNA testing in a Northern European population. J Inherit Metab Dis 33(Suppl 2):S263–S271 Vernooij-van Langen AM, Loeber JG, Elvers B, Triepels RH, Gille JJ, Van der Ploeg CP et al (2012) Novel strategies in newborn screening for cystic fibrosis: a prospective controlled study. Thorax 67(4):289–295 Sommerburg O, Hammermann J, Lindner M, Stahl M, Muckenthaler M, Kohlmueller D et al (2015) Five years of experience with biochemical cystic fibrosis newborn screening based on IRT/PAP in Germany. Pediatr Pulmonol 50(7):655–664 Krulisova V, Balascakova M, Skalicka V, Piskackova T, Holubova A, Paderova J et al (2012) Prospective and parallel assessments of cystic fibrosis newborn screening protocols in the Czech Republic: IRT/DNA/IRT versus IRT/PAP and IRT/PAP/DNA. Eur J Pediatr 171(8):1223–1229 Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR et al (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr 153(2):S4–S14 Nährlich L, Stuhrmann-Spangenberg M, Dehrichs N (2014) Handlungsempfehlung nach der Leitlinie „Diagnose der Mukoviszidose“. Monatsschr Kinderheilkd 162:723–724 Mall MA (2014) CFTR-Funktionsdiagnostik. In: Von Mutius E, Gappa M, Eber E, Frey U (Hrsg) Pädiatrische Pneumologie, 3. Aufl. Springer, Heidelberg, S 307–312 Stahl M, Joachim C, Blessing K, Hammerling S, Sommerburg O, Latzin P et al (2014) Multiple breath washout is feasible in the clinical setting and detects abnormal lung function in infants and young children with cystic fibrosis. Respiration 87(5):357–363 Subbarao P, Stanojevic S, Brown M, Jensen R, Rosenfeld M, Davis S et al (2013) Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med 188(4):456–460 Behrendt L, Voskrebenzev A, Klimes F, Gutberlet M, Winther HB, Kaireit TF et al (2020) Validation of automated perfusion-weighted phase-resolved functional lung (PREFUL)-MRI in patients with pulmonary diseases. J Magn Reson Imaging 52(1):103–114 Wielputz MO, Eichinger M, Biederer J, Wege S, Stahl M, Sommerburg O et al (2016) Imaging of cystic fibrosis lung disease and clinical interpretation. Rofo 188(9):834–845 Leutz-Schmidt P, Eichinger M, Sommerburg O, Stahl M, Triphan SMF, Gehlen S et al (2020) Magnetresonanztomographie der Lunge bei Mukoviszidose. Radiologie 60(9):813–822 Bischoff A, Weinheimer O, Eichinger M, Stahl M, Sommerburg O, Kauczor HU et al (2020) Computertomographie der Lunge bei Mukoviszidose. Radiologie 60(9):791–801 Abbott J, Morton AM, Hurley MA, Conway SP (2015) Longitudinal impact of demographic and clinical variables on health-related quality of life in cystic fibrosis. BMJ Open 5(5):e7418 Stahl M, Steinke E, Graeber SY, Joachim C, Seitz C, Kauczor HU et al (2021) Magnetic resonance imaging detects progression of lung disease and impact of newborn screening in preschool children with cystic fibrosis. Am J Respir Crit Care Med 204(8):943–953 Mentzel HJ, Renz DM (2020) Abdomenbildgebung bei zystischer Fibrose. Radiologie 60(9):831–838 Wucherpfennig L, Triphan SMF, Wege S, Kauczor HU, Heussel CP, Schmitt N et al (2022) Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J Cyst Fibros. https://doi.org/10.1016/j.jcf.2022.03.011 Mott LS, Gangell CL, Murray CP, Stick SM, Sly PD (2009) Bronchiectasis in an asymptomatic infant with cystic fibrosis diagnosed following newborn screening. J Cyst Fibros 8(4):285–287 Long FR, Williams RS, Castile RG (2004) Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 144(2):154–161 Sly PD, Gangell CL, Chen L, Ware RS, Ranganathan S, Mott LS et al (2013) Risk factors for bronchiectasis in children with cystic fibrosis. New Engl J Med 368(21):1963–1970 Hopkins SR, Wielputz MO, Kauczor HU (2012) Imaging lung perfusion. J Appl Physiol 113(2):328–339 Leutz-Schmidt P, Stahl M, Sommerburg O, Eichinger M, Puderbach MU, Schenk JP et al (2018) Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur J Radiol 101:178–183 Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC et al (2020) The future of cystic fibrosis care: a global perspective. Lancet Respir Med 8(1):65–124 Sommerburg O, Schenk JP (2020) Abdominelle Manifestationen bei Mukoviszidose: Klinische Übersicht. Radiologie 60(9):781–790 Stahl M (2020) Klinisches Bild der Lungenerkrankung bei zystischer Fibrose. Radiologie 60(9):774–780 Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Drevinek P et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365(18):1663–1672 Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M et al (2015) Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373(3):220–231 Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E et al (2017) Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med 377(21):2024–2035 Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard C et al (2017) Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 377(21):2013–2023 Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E et al (2019) Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394:1940–1948. https://doi.org/10.1016/S0140-6736(19)32597-8 Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D et al (2019) Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 381(19):1809–1819 Graeber SY, Vitzthum C, Pallenberg ST, Naehrlich L, Stahl M, Rohrbach A et al (2022) Effects of elexacaftor/tezacaftor/ivacaftor therapy on CFTR function in patients with cystic fibrosis and one or two F508del alleles. Am J Respir Crit Care Med 205(5):540–549