Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting

Eric Y. Chen1, Christopher C. Milleville1, Joshua M. O. Zide1, Matthew F. Doty1, Jing Zhang2
1Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
2University of Delaware, Newark, Delaware 19716, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hirst L.C. and Ekins-Daukes N.J.: Fundamental losses in solar cells. Prog. Photovoltaics Res. Appl. 19, 286–293 (2011).

Bard A.J. and Fox M.A.: Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

Dimroth F. and Kurtz S.: High-efficiency multijunction solar cells. MRS Bull. 32, 230–235 (2007).

Luque A. and Martí A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997).

Green M.A., Hishikawa Y., Dunlop E.D., Levi D.H., Hohl-Ebinger J., and Ho-Baillie A.W.Y.: Solar cell efficiency tables (version 51). Prog. Photovoltaics Res. Appl. 26, 3–12 (2018).

Trupke T., Green M.A., and Würfel P.: Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117–4122 (2002).

Sellers D.G., Zhang J., Chen E.Y., Zhong Y., Doty M.F., and Zide J.M.O.: Novel nanostructures for efficient photon upconversion and high-efficiency photovoltaics. Sol. Energy Mater. Sol. Cells 155, 446–453 (2016).

Auzel F.: Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004).

Zhao J., Wu W., Sun J., and Guo S.: Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 42, 5323–5351 (2013).

Auzel F.: Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte ET dans un verre. C. R. Hebd. Seances Acad. Sci. 262, 1016 (1966).

De Wild J., Rath J.K., Meijerink A., Van Sark W.G.J.H.M., and Schropp R.E.I.: Enhanced near-infrared response of a-Si:H solar cells with ß-NaYF4:Yb3+(18%), Er3+(2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010).

Van Der Ende B.M., Aarts L., and Meijerink A.: Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009).

Vetrone F., Naccache R., Mahalingam V., Morgan C.G., and Capobianco J.A.: The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19, 2924–2929 (2009).

Suyver J.F., Grimm J., van Veen M.K., Biner D., Krämer K.W., and Güdel H.U.: Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+, and/or Yb3+. J. Lumin. 117, 1–12 (2006).

Wisser M.D., Fischer S., Siefe C., Alivisatos A.P., Salleo A., and Dionne J.A.: Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 18, 2689–2695 (2018).

Han S., Deng R., Xie X., and Liu X.: Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 53, 11702–11715 (2014).

Wilhelm S.: Perspectives for upconverting nanoparticles. ACS Nano 11, 10644–10653 (2017).

MacDougall S.K.W., Ivaturi A., Marques-Hueso J., Krämer K.W., and Richards B.S.: Ultra-high photoluminescent quantum yield of ß-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices. Opt. Express 20, A879–A887 (2012).

Huang Z., Li X., Mahboub M., Hanson K.M., Nichols V.M., Le H., Tang M.L., and Bardeen C.J.: Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

Mongin C., Garakyaraghi S., Razgoniaeva N., Zamkov M., and Castellano F.N.: Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016).

Liu L., Huang D., Draper S.M., Yi X., Wu W., and Zhao J.: Visible light-harvesting trans bis(alkylphosphine) platinum(II)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Trans. 42, 10694–10706 (2013).

Wang B., Sun B., Wang X., Ye C., Ding P., Liang Z., Chen Z., Tao X., and Wu L.: Efficient triplet sensitizers of palladium(II) tetraphenylporphyrins for upconversion-powered photoelectrochemistry. J. Phys. Chem. C 118, 1417–1425 (2014).

Frazer L., Gallaher J.K., and Schmidt T.W.: Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2, 1346–1354 (2017).

Cheng Y.Y., Fückel B., MacQueen R.W., Khoury T., Clady R.G.C.R., Schulze T.F., Ekins-Daukes N.J., Crossley M.J., Stannowski B., Lips K., and Schmidt T.W.: Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5, 6953–6959 (2012).

Goldschmidt J.C. and Fischer S.: Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015).

Fischer S., Favilla E., Tonelli M., and Goldschmidt J.C.: Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).

Schulze T.F. and Schmidt T.W.: Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103–125 (2015).

Colvin V.L., Schlamp M.C., and Alivisatos A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

Kirstaedter N., Ledentsov N.N., Grundmann M., Bimberg D., Ustinov V.M., Ruvimov S.S., Maximov M.V., Kop’ev P.S., Alferov Z., Richter U., Werner P., Gosele U., and Heydenreich J.: Low threshold, large to injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416 (1994).

Chan W.W.C. and Nie S.: Quantum dot bioconjugates for ultrasensitive non isotopic detection. Science 281, 2016–2018 (1998).

Nozik A.J.: Quantum dot solar cells. Phys. E 14, 115 (2002).

Leatherdale C.A., Woo W.K., Mikulec F.V., and Bawendi M.G.: On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

Martí A., Antolín E., Stanley C.R., Farmer C.D., López N., Díaz P., Cánovas E., Linares P.G., and Luque A.: Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 97, 247701-1-247701-4 (2006).

Mcdonald S.A., Konstantatos G., Zhang S., Cyr P.W., Klem E.J., Levina L., and Sargent E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005).

Sanehira E.M., Marshall A.R., Christians J.A., Harvey S.P., Ciesielski P.N., Wheeler L.M., Schulz P., Lin L.Y., Beard M.C., and Luther J.M.: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017).

Ellingson R.J., Beard M.C., Johnson J.C., Yu P., Micic O.I., Nozik A.J., Shabaev A., and Efros A.L.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

Klimov V.I., Mikhailovsky A.A., Xu S., Malko A.A., Hollingsworth J.A., Leatherdale C.A., Eisler H.J., and Bawendi M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

Poles E., Selmarten D.C., Micic O.I., and Nozik A.J.: Anti-Stokes photoluminescence in colloidal semiconductor quantum dots. Appl. Phys. Lett. 75, 971–973 (1999).

Wang X., Yu W., Zhang J., Aldana J., Peng X., and Xiao M.: Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 68, 125318-1-125318-6 (2003).

Ferne M.J., Jensen P., and Rubinsztein-Dunlop H.: Unconventional photoluminescence upconversion from PbS quantum dots. Appl. Phys. Lett. 91, 043112-1-043112-3 (2007).

Atre A.C. and Dionne J.A.: Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies. J. Appl. Phys. 110, 034505 (2011).

Chen E.Y., Zhang J., Sellers D.G., Zhong Y., Zide J.M.O., and Doty M.F.: A kinetic rate model of novel upconversion nanostructures for high-efficiency photovoltaics. IEEE J. Photovoltaics 6, 1183–1190 (2016).

Shockley W. and Queisser H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

Tex D.M. and Kamiya I.: Upconversion of infrared photons to visible luminescence using InAs-based quantum structures. Phys. Rev. B 83, 081309-1-081309-4 (2011).

Tex D.M., Kamiya I., and Kanemitsu Y.: Efficient upconverted photocurrent through an Auger process in disklike InAs quantum structures for intermediate-band solar cells. Phys. Rev. B 87, 1–7 (2013).

Johnson E.J., Kafalas J., Davies R.W., and Dyes W.A.: Deep center EL2 and anti-stokes luminescence in semi-insulating GaAs. Appl. Phys. Lett. 40, 993–995 (1982).

Quagliano L.G. and Nather H.: Up conversion of luminescence via deep centers in high purity GaAs and GaAlAs epitaxial layers. Appl. Phys. Lett. 45, 555–557 (1984).

Alivisatos A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (2004).

Norris D. and Bawendi M.: Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996).

Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., and Sargent E.H.: Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

Moreels I., Lambert K., De Muynck D., Vanhaecke F., Poelman D., Martins J.C., Allan G., and Hens Z.: Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).

Makarov N.S., Lin Q., Pietryga J.M., Robel I., and Klimov V.I.: Auger up-conversion of low-intensity infrared light in engineered quantum dots. ACS Nano 10, 10829–10841 (2016).

Teitelboim A. and Oron D.: Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures. ACS Nano 10, 446–452 (2016).

Deutsch Z., Neeman L., and Oron D.: Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol. 8, 649–653 (2013).

Chen E.Y., Li Z., Milleville C.C., Lennon K.R., and Doty M.F.: CdSe(Te)/CdS/CdSe rods versus CdTe/CdS/CdSe spheres: Morphology-dependent carrier dynamics for photon upconversion. IEEE J. Photovoltaics 8, 746–751 (2018).

Milleville C.C., Chen E.Y., Lennon K.R., Cleveland J.M., Kumar A., Bork J.A., Tessier A., LeBeau J.M., Chase D.B., Zide J.M.O., and Doty M.F.: Engineering Efficient Photon Upconversion in Semiconductor Heterostructures. Just Accepted Manuscript (2018). https://doi.org/10.1021/acsnano.8b07062.

Hines M.A. and Guyot-Sionnest P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

Luque A. and Martí A.: The intermediate band solar cell: Progress toward the realization of an attractive concept. Adv. Mater. 22, 160–174 (2010).

Martí A., López N., Antolín E., Cánovas E., Stanley C., Farmer C., Cuadra L., and Luque A.: Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films 511–512, 638–644 (2006).

Yoshida M., Ekins-Daukes N.J., Farrell D.J., and Phillips C.C.: Photon ratchet intermediate band solar cells. Appl. Phys. Lett. 100, 263902-1-263902-4 (2012).

Asahi S., Teranishi H., Kusaki K., Kaizu T., and Kita T.: Two-step photon up-conversion solar cells. Nat. Commun. 8, 14962 (2017).

Asahi S., Kusaki K., Harada Y., and Kita T.: Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface. Sci. Rep. 8, 1–8 (2018).

Petropoulos J.P., Zhong Y., and Zide J.M.O.: Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110–1–031110–3 (2011).

Osborne S.W., Blood P., Smowton P.M., Xin Y.C., Stintz A., Huffaker D., and Lester L.F.: Optical absorption cross section of quantum dots. J. Phys.: Condens. Matter 16, S3749–S3756 (2004).

Schulze T.F., Czolk J., Cheng Y.Y., Fückel B., MacQueen R., Khoury T., Crossley M.J., Stannowski B., Lips K., Lemmer U., Colsmann A., and Schmidt T.W.: Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 116, 22794–22801 (2012).

Richards B.S. and Shalav A.: Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion. IEEE Trans. Electron Devices 54, 2679–2684 (2007).

Shao W., Chen G., Ohulchanskyy T.Y., Kuzmin A., Damasco J., Qiu H., Yang C., Ågren H., and Prasad P.N.: Lanthanide-doped fluoride core/multishell nanoparticles for broadband upconversion of infrared light. Adv. Opt. Mater. 3, 575–582 (2015).

Lee T.D. and Ebong A.U.: A review of thin film solar cell technologies and challenges. Renewable Sustainable Energy Rev. 70, 1286–1297 (2017).

Chu S., Cui Y., and Liu N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

Lewis N.S.: Research opportunities to advance solar energy utilization. Science 351, 353 (2016).

van Sark W.G., de Wild J., Rath J.K., Meijerink A., and Schropp R.E.: Upconversion in solar cells. Nanoscale Res. Lett. 8, 81 (2013).

Cheng Y.Y., Nattestad A., Schulze T.F., MacQueen R.W., Fückel B., Lips K., Wallace G.G., Khoury T., Crossley M.J., and Schmidt T.W.: Increased upconversion performance for thin film solar cells: A trimolecular composition. Chem. Sci. 7, 559–568 (2015).

Simon Y.C. and Weder C.: Low-power photon upconversion through triplet–triplet annihilation in polymers. J. Mater. Chem. 22, 20817–20830 (2012).

Monguzzi A., Braga D., Gandini M., Holmberg V.C., Kim D.K., Sahu A., Norris D.J., and Meinardi F.: Broadband up-conversion at subsolar irradiance: Triplet–triplet annihilation boosted by fluorescent semiconductor nanocrystals. Nano Lett. 14, 6644–6650 (2014).

Schnitzer I., Yablonovitch E., Caneau C., and Gmitter T.J.: Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131–133 (1993).

Ogawa T., Yanai N., Monguzzi A., and Kimizuka N.: Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5, 1–9 (2015).

Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., and Bawendi M.G.: (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

Wang J., Long Y.T., Zhang Y.L., Zhong X.H., and Zhu L.Y.: Preparation of highly luminescent CdTe/CdS core/shell quantum dots. ChemPhysChem 10, 680–685 (2009).

Lim S.J., Chon B., Joo T., and Shin S.K.: Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water. J. Phys. Chem. C 112, 1744–1747 (2008).

Talapin D.V., Mekis I., Götzinger S., Kornowski A., Benson O., and Weller H.: CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J. Phys. Chem. B 108, 18826–18831 (2004).

Deka S., Quarta A., Lupo M.G., Falqui A., Boninelli S., Giannini C., Morello G., De Giorgi M., Lanzani G., Spinella C., Cingolani R., Pellegrino T., and Manna L.: CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. J. Am. Chem. Soc. 131, 2948–2958 (2009).

Drijvers E., De Roo J., Geiregat P., Fehér K., Hens Z., and Aubert T.: Revisited wurtzite CdSe synthesis: A gateway for the versatile flash synthesis of multishell quantum dots and rods. Chem. Mater. 28, 7311–7323 (2016).

Hadar I., Philbin J.P., Panfil Y.E., Neyshtadt S., Lieberman I., Eshet H., Lazar S., Rabani E., and Banin U.: Semiconductor seeded nanorods with graded composition exhibiting high quantum-yield, high polarization, and minimal blinking. Nano Lett. 17, 2524–2531 (2017).

Zhao H., Fan Z., Liang H., Selopal G.S., Gonfa B.A., Jin L., Soudi A., Cui D., Enrichi F., Natile M.M., Concina I., Ma D., Govorov A.O., Rosei F., and Vomiero A.: Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films. Nanoscale 6, 7004–7011 (2014).

Pan A.C., del Cañizo C., and Luque A.: Characterization of up-converter layers on bifacial silicon solar cells. Mater. Sci. Eng., B 159–160, 212–215 (2009).

Börjesson K., Rudquist P., Gray V., and Moth-Poulsen K.: Photon upconversion with directed emission. Nat. Commun. 7, 1–8 (2016).

Lu D., Mao C., Cho S.K., Ahn S., and Park W.: Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+, Er3+ upconversion nanoparticles. Sci. Rep. 6, 1–11 (2016).

Zou W., Visser C., Maduro J.A., Pshenichnikov M.S., and Hummelen J.C.: Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012).