Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

Swati Shikha1, Xiang Zheng1, Yong Zhang1
1Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Block E4 #04-08, Singapore, 117583, Singapore

Tóm tắt

Từ khóa


Tài liệu tham khảo

B.M. Grüner, C.J. Schulze, D. Yang, D. Ogasawara, M.M. Dix et al., An in vivo multiplexed small-molecule screening platform. Nat. Methods 13(10), 883–889 (2016). https://doi.org/10.1038/nmeth.3992

B. Spurgeon, A. Aburima, N. Oberprieler, K. Taskén, K. Naseem, Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets. J. Thromb. Haemost. 12(10), 1733–1743 (2014). https://doi.org/10.1111/jth.12670

X. Tan, L. Hu, L.J. Luquette III, G. Gao, Y. Liu, H. Qu, R. Xi, Z.J. Lu, P.J. Park, S.J. Elledge, Systematic identification of synergistic drug pairs targeting HIV. Nat. Biotechnol. 30(11), 1125–1130 (2012). https://doi.org/10.1038/nbt.2391

R.I. Zeitoun, A.D. Garst, G.D. Degen, G. Pines, T.J. Mansell, T.Y. Glebes, N.R. Boyle, R.T. Gill, Multiplexed tracking of combinatorial genomic mutations in engineered cell populations. Nat. Biotechnol. 33(6), 631–637 (2015). https://doi.org/10.1038/nbt.3177

Z. Sun, R. Zhang, Z. Liu, C. Liu, X. Li, W. Zhou, L. Yang, Q. Ruan, X. Zhang, Development of a fluorescence–based multiplex genotyping method for simultaneous determination of human papillomavirus infections and viral loads. BMC Cancer 15(1), 860 (2015). https://doi.org/10.1186/s12885-015-1874-9

J. Zhu, C. Qiu, M. Palla, T. Nguyen, J.J. Russo, J. Ju, Q. Lin, A microfluidic device for multiplex single-nucleotide polymorphism genotyping. RSC Adv. 4(9), 4269–4277 (2014). https://doi.org/10.1039/C3RA44091E

R. Tozzoli, D. Villalta, Autoantibody profiling of patients with antiphospholipid syndrome using an automated multiplexed immunoassay system. Autoimmun. Rev. 13(1), 59–63 (2014). https://doi.org/10.1016/j.autrev.2013.08.007

P. Lea, E. Keystone, S. Mudumba, A. Kahama, S.-F. Ding, J. Hansen, A.A. Azad, S. Wang, D. Weber, Advantages of multiplex proteomics in clinical immunology. Clin. Rev. Allergy Immunol. 41(1), 20–35 (2011). https://doi.org/10.1007/s12016-009-8189-z

J.D. Lapek Jr., P. Greninger, R. Morris, A. Amzallag, I. Pruteanu-Malinici, C.H. Benes, W. Haas, Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35(10), 983–989 (2017). https://doi.org/10.1038/nbt.3955

X.-P. He, X.-L. Hu, T.D. James, J. Yoon, H. Tian, Multiplexed photoluminescent sensors: towards improved disease diagnostics. Chem. Soc. Rev. 46(22), 6687–6696 (2017). https://doi.org/10.1039/C6CS00778C

D.-W. Li, W.-L. Zhai, Y.-T. Li, Y.-T. Long, Recent progress in surface enhanced raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 181(1–2), 23–43 (2014). https://doi.org/10.1007/s00604-013-1115-3

C.D. Earle, E.M. King, A. Tsay, K. Pittman, B. Saric, L. Vailes, R. Godbout, K.G. Oliver, M.D. Chapman, High-throughput fluorescent multiplex array for indoor allergen exposure assessment. J. Allergy Clin. Immunol. 119(2), 428–433 (2007). https://doi.org/10.1016/j.jaci.2006.11.004

Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with raman spectroscopic fingerprints for DNA and rna detection. Science 297(5586), 1536–1540 (2002). https://doi.org/10.1126/science.297.5586.1536

I.E. Sendroiu, L.K. Gifford, A. Lupták, R.M. Corn, Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J. Am. Chem. Soc. 133(12), 4271–4273 (2011). https://doi.org/10.1021/ja2005576

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, Y. Cui, Sers-fluorescence joint spectral encoding using organic–metal–QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J. Am. Chem. Soc. 134(6), 2993–3000 (2012). https://doi.org/10.1021/ja208154m

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, G.D. Stucky, Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv. Mater. 23(33), 3775–3779 (2011). https://doi.org/10.1002/adma.201190129

T.R. Sathe, A. Agrawal, S. Nie, Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal. Chem. 78(16), 5627–5632 (2006). https://doi.org/10.1021/ac0610309

J. Du, P. Bernasconi, K.R. Clauser, D. Mani, S.P. Finn et al., Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol. 27(1), 77–83 (2009). https://doi.org/10.1038/nbt.1513

D.S. Dandy, P. Wu, D.W. Grainger, Array feature size influences nucleic acid surface capture in DNA microarrays. P. Natl. Acad. Sci. USA 104(20), 8223–8228 (2007). https://doi.org/10.1073/pnas.0606054104

Y. Leng, K. Sun, X. Chen, W. Li, Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev. 44(15), 5552–5595 (2015). https://doi.org/10.1039/C4CS00382A

R. Wilson, A.R. Cossins, D.G. Spiller, Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem. Int. Ed. 45(37), 6104–6117 (2006). https://doi.org/10.1002/anie.200600288

K. Braeckmans, S.C. De Smedt, M. Leblans, R. Pauwels, J. Demeester, Encoding microcarriers: present and future technologies. Nat. Rev. Drug Discov. 1(6), 447–456 (2002). https://doi.org/10.1038/nrd817

R.J. Fulton, R.L. McDade, P.L. Smith, L.J. Kienker, J.R. Kettman, Advanced multiplexed analysis with the FlowMetrixTM system. Clin. Chem. 43(9), 1749–1756 (1997)

D. Peng, Q. Ju, X. Chen, R. Ma, B. Chen et al., Lanthanide-doped energy cascade nanoparticles: full spectrum emission by single wavelength excitation. Chem. Mater. 27(8), 3115–3120 (2015). https://doi.org/10.1021/acs.chemmater.5b00775

F. Wang, X. Liu, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 47(4), 1378–1385 (2014). https://doi.org/10.1021/ar5000067

S. Wu, G. Han, D.J. Milliron, S. Aloni, V. Altoe, D.V. Talapin, B.E. Cohen, P.J. Schuck, Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009). https://doi.org/10.1073/pnas.0904792106

J. Xu, L. Xu, C. Wang, R. Yang, Q. Zhuang et al., Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11(5), 4463–4474 (2017). https://doi.org/10.1021/acsnano.7b00715

S. Shikha, T. Salafi, J. Cheng, Y. Zhang, Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 46(22), 7054–7093 (2017). https://doi.org/10.1039/C7CS00271H

J. Lee, P.W. Bisso, R.L. Srinivas, J.J. Kim, A.J. Swiston, P.S. Doyle, Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 13(5), 524–529 (2014). https://doi.org/10.1038/nmat3938

H. Liu, Y. Zhang, Droplet formation in microfluidic cross-junctions. Phys. Fluids 23(8), 082101 (2011). https://doi.org/10.1063/1.3615643

H. Liu, X. Qian, Z. Wu, R. Yang, S. Sun, H. Ma, Microfluidic synthesis of QD-encoded pegda microspheres for suspension assay. J. Mater. Chem. B 4(3), 482–488 (2016). https://doi.org/10.1039/C5TB02209F

C. Yesildag, A. Tyushina, M. Lensen, Nano-contact transfer with gold nanoparticles on PEG hydrogels and using wrinkled PDMS-stamps. Polym. Basel 9(6), 199 (2017). https://doi.org/10.3390/polym9060199

H.S. Qian, H.C. Guo, P.C.L. Ho, R. Mahendran, Y. Zhang, Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20), 2285–2290 (2009). https://doi.org/10.1002/smll.200900692

Q. Dou, N.M. Idris, Y. Zhang, Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 34(6), 1722–1731 (2013). https://doi.org/10.1016/j.biomaterials.2012.11.011

C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C.I. Lang, D. Jin, Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17(5), 2858–2864 (2017). https://doi.org/10.1021/acs.nanolett.6b05331

S. Park, H.J. Lee, W.-G. Koh, Multiplex immunoassay platforms based on shape-coded poly (ethylene glycol) hydrogel microparticles incorporating acrylic acid. Sens. Basel 12(6), 8426–8436 (2012). https://doi.org/10.3390/s120608426

D. Fan, C. Wu, K. Wang, X. Gu, Y. Liu, E. Wang, A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem. Commun. 52(2), 406–409 (2016). https://doi.org/10.1039/C5CC06754E

J. Zhang, S. Kruss, A.J. Hilmer, S. Shimizu, Z. Schmois et al., A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors. Adv. Healthc. Mater. 3(3), 412–423 (2014). https://doi.org/10.1002/adhm.201300033

Y. Tang, W. Di, X. Zhai, R. Yang, W. Qin, Nir-responsive photocatalytic activity and mechanism of nayf4:Yb, Tm@TiO2 core–shell nanoparticles. ACS Catal. 3(3), 405–412 (2013). https://doi.org/10.1021/cs300808r

B. Cao, J. Wu, Z. Feng, B. Dong, Investigation of near-infrared-to-ultraviolet upconversion luminescence of Tm3+ doped NAYF4 phosphors by Yb3+ codoping. Mater. Chem. Phys. 142(1), 333–338 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.025

G. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, P.N. Prasad, Ultrasmall monodisperse nayf4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4(6), 3163–3168 (2010). https://doi.org/10.1021/nn100457j

L.C. Ong, L.Y. Ang, S. Alonso, Y. Zhang, Bacterial imaging with photostable upconversion fluorescent nanoparticles. Biomaterials 35(9), 2987–2998 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.060

J.B. Hall, M.A. Dobrovolskaia, A.K. Patri, S.E. McNeil, Characterization of nanoparticles for therapeutics. Nanomed. UK 2(6), 789–803 (2007). https://doi.org/10.2217/17435889.2.6.789