Up-regulation of miR-340-5p promotes progression of thyroid cancer by inhibiting BMP4

Pengxin Zhao1, Wenxue Ma1, Zhigang Hu1, Y Zhang1, S Zhang2, Y Wang1
1The Second Hospital of Hebei Medical University, Shijiazhuang, China
2Xingtai People’s Hospital of Hebei Province, Xingtai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30. https://doi.org/10.3322/caac.21387

Fagin JA, Wells SA Jr (2016) Biologic and clinical perspectives on thyroid cancer. N Engl J Med 375:1054–1067. https://doi.org/10.1056/NEJMra1501993

Lai EC (2015) Two decades of miRNA biology: lessons and challenges. RNA 21:675–677. https://doi.org/10.1261/rna.051193.115

Blenkiron C, Miska EA (2007) miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 16(Spec No 1):R106–R113. https://doi.org/10.1093/hmg/ddm056

de la Chapelle A, Jazdzewski K (2011) MicroRNAs in thyroid cancer. J Clin Endocrinol Metab 96:3326–3336. https://doi.org/10.1210/jc.2011-1004

Xiong Q, Wu S, Wang J, Zeng X, Chen J, Wei M, Guan H, Fan C, Chen L, Guo D, Sun G (2017) Hepatitis B virus promotes cancer cell migration by downregulating miR-340-5p expression to induce STAT3 overexpression. Cell Biosci 7:16. https://doi.org/10.1186/s13578-017-0144-8

Song L, Duan P, Gan Y, Li P, Zhao C, Xu J, Zhang Z, Zhou Q (2017) MicroRNA-340-5p modulates cisplatin resistance by targeting LPAATbeta in osteosarcoma. Braz J Med Biol Res 50:e6359. https://doi.org/10.1590/1414-431X20176359

Wozniak M, Sztiller-Sikorska M, Czyz M (2015) Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp Mol Pathol 99:707–716. https://doi.org/10.1016/j.yexmp.2015.11.014

Zhang Q, Lou Y, Zhang J, Fu Q, Wei T, Sun X, Chen Q, Yang J, Bai X, Liang T (2017) Hypoxia-inducible factor-2alpha promotes tumor progression and has crosstalk with Wnt/beta-catenin signaling in pancreatic cancer. Mol Cancer 16:119. https://doi.org/10.1186/s12943-017-0689-5

Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam KC, Munoz-Antonia T, Qu X, Eschrich S, Uramoto H, Tanaka F, Nasarre P, Gemmill RM, Roche J, Drabkin HA, Haura EB (2016) ZEB1 mediates acquired resistance to the epidermal growth factor receptor-tyrosine kinase inhibitors in non-small cell lung cancer. PLoS ONE 11:e0147344. https://doi.org/10.1371/journal.pone.0147344

Gao H, Teng C, Huang W, Peng J, Wang C (2015) SOX2 promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-alpha signaling. Int J Mol Sci 16:21643–21657. https://doi.org/10.3390/ijms160921643

Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL, Chen HL, Zhang GY, Deng LL (2013) Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol 43:113–120. https://doi.org/10.3892/ijo.2013.1913

Lopez JP, Wang-Rodriguez J, Chang C, Chen JS, Pardo FS, Aguilera J, Ongkeko WM (2007) Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines. Arch Otolaryngol Head Neck Surg 133:1022–1027. https://doi.org/10.1001/archotol.133.10.1022

Mitra A, Mishra L, Li S (2015) EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 6:10697–10711. https://doi.org/10.18632/oncotarget.4037

Zhou Y, Tong L, Chu X, Deng F, Tang J, Tang Y, Dai Y (2017) The adenosine A1 receptor antagonist DPCPX inhibits tumor progression via the ERK/JNK pathway in renal cell carcinoma. Cell Physiol Biochem 43:733–742. https://doi.org/10.1159/000481557

Zhu J, Wang FL, Wang HB, Dong N, Zhu XM, Wu Y, Wang YT, Yao YM (2017) TNF-alpha mRNA is negatively regulated by microRNA-181a-5p in maturation of dendritic cells induced by high mobility group box-1 protein. Sci Rep 7:12239. https://doi.org/10.1038/s41598-017-12492-3

Czajka AA, Wojcicka A, Kubiak A, Kotlarek M, Bakula-Zalewska E, Koperski L, Wiechno W, Jazdzewski K (2016) Family of microRNA-146 regulates RARbeta in papillary thyroid carcinoma. PLoS ONE 11:e0151968. https://doi.org/10.1371/journal.pone.0151968

Ampuja M, Jokimaki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo EL, Kallioniemi A (2013) BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer 13:429. https://doi.org/10.1186/1471-2407-13-429

Fang WT, Fan CC, Li SM, Jang TH, Lin HP, Shih NY, Chen CH, Wang TY, Huang SF, Lee AY, Liu YL, Tsai FY, Huang CT, Yang SJ, Yen LJ, Chuu CP, Chen CY, Hsiung CA, Chang JY, Wang LH, Chang IS, Jiang SS (2014) Downregulation of a putative tumor suppressor BMP4 by SOX2 promotes growth of lung squamous cell carcinoma. Int J Cancer 135:809–819. https://doi.org/10.1002/ijc.28734

Shirai YT, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K (2011) Bone morphogenetic protein-2 and -4 play tumor suppressive roles in human diffuse-type gastric carcinoma. Am J Pathol 179:2920–2930. https://doi.org/10.1016/j.ajpath.2011.08.022

Reddy KB (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int 15:38. https://doi.org/10.1186/s12935-015-0185-1

Duerr EM, Mizukami Y, Moriichi K, Gala M, Jo WS, Kikuchi H, Xavier RJ, Chung DC (2012) Oncogenic KRAS regulates BMP4 expression in colon cancer cell lines. Am J Physiol Gastrointest Liver Physiol 302:G1223–G1230. https://doi.org/10.1152/ajpgi.00047.2011

Meng X, Zhu P, Li N, Hu J, Wang S, Pang S, Wang J (2017) Expression of BMP-4 in papillary thyroid carcinoma and its correlation with tumor invasion and progression. Pathol Res Pract 213:359–363. https://doi.org/10.1016/j.prp.2017.01.008

Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

Bai XL, Zhang Q, Ye LY, Liang F, Sun X, Chen Y, Hu QD, Fu QH, Su W, Chen Z, Zhuang ZP, Liang TB (2015) Myocyte enhancer factor 2C regulation of hepatocellular carcinoma via vascular endothelial growth factor and Wnt/beta-catenin signaling. Oncogene 34:4089–4097. https://doi.org/10.1038/onc.2014.337