Unveiling the role of bioturbation on bacterial activity in metal-contaminated sediments
Tài liệu tham khảo
Aller, 1986, Evidence for localized enhancement of biological activity associates with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic, Deep-Sea Res., 33, 755, 10.1016/0198-0149(86)90088-9
Aller, 1998, The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments, J. Mar. Res., 56, 905, 10.1357/002224098321667413
Ayangbenro, 2018, Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation, Front. Microbiol., 9, 1, 10.3389/fmicb.2018.01986
Bansil, 1995, Mucin biophysics, Annu. Rev. Physiol., 57, 635, 10.1146/annurev.ph.57.030195.003223
Bayen, 2012, Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review, Environ. Int., 48, 84, 10.1016/j.envint.2012.07.008
Bertin, 2006, Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review), Biochimie, 88, 1549, 10.1016/j.biochi.2006.10.001
Borges, 2014, Use of GIS for the evaluation of heavy metal contamination in the Cunha Canal watershed and west of the Guanabara Bay, Rio de Janeiro, RJ, Mar. Pollut. Bull., 89, 75, 10.1016/j.marpolbul.2014.10.033
Bridson, 1970, Chapter III design and formulation of microbial culture media, 10.1016/S0580-9517(08)70541-5
Christensen, 2000, Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension feeding (N. virens) polychaetes, Mar. Ecol. Prog. Ser., 192, 203, 10.3354/meps192203
Ciutat, 2005, Effects of bioturbation on cadmium transfer and distribution into freshwater sediments, Environ. Toxicol. Chem., 24, 1048, 10.1897/04-374R.1
Cordeiro, 2015, Geochemical fractionation of metals and semimetals in surface sediments from tropical impacted estuary (Guanabara Bay, Brazil), Environ. Earth Sci., 74, 1363, 10.1007/s12665-015-4127-y
Dale, 2019, Polychaete mucopolysaccharide alters sediment microbial diversity and stimulates ammonia-oxidizing functional groups, FEMS Microbiol. Ecol., 95, 10.1093/femsec/fiy234
De Jonge, 2010, The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology, Environ. Pollut., 158, 1381, 10.1016/j.envpol.2010.01.001
Dubois, 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017
Flemming, 2016, EPS—then and now, Microorganisms, 4, 41, 10.3390/microorganisms4040041
Flemming, 2010, The biofilm matrix, Nat. Rev. Microbiol., 8, 623, 10.1038/nrmicro2415
Gerchacov, 1972, Improved technique for analysis of carbohydrates in sediment, Limnol. Oceanog., 17, 938, 10.4319/lo.1972.17.6.0938
Gessner, 2010, Diversity meets decomposition, Trends Ecol. Evol., 25, 372, 10.1016/j.tree.2010.01.010
Harrison, 2007, Multimetal resistance and tolerance in microbial biofilms, Nat. Rev. Microbiol., 5, 928, 10.1038/nrmicro1774
Hartree, 1972, Determination of protein: a modification of the Lowry method that gives a linear photometric response, Anal. Biochem., 48, 422, 10.1016/0003-2697(72)90094-2
Higham, 1986, Cadmium-binding proteins in Pseudomonas putida: Pseudothioneins, Environ. Health Perspect., 65, 5
Houri-Davignon, 1989, Measurement of actual electron transport system (ETS). Activity in marine sediments by incubation with INT, Environ. Technol. Lett., 10, 91, 10.1080/09593338909384722
van Hullebusch, 2003, Metal immobilization by biofilms: mechanisms and analytical tools, Rev. Environ. Sci. Biotechnol., 2, 9, 10.1023/B:RESB.0000022995.48330.55
Kepner, 1994, Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present, Microbiol. Rev., 58, 603, 10.1128/MR.58.4.603-615.1994
Knox, 2020, Effect of bioturbation on contaminated sediment deposited over remediated sediment, Sci. Total Environ., 713, 10.1016/j.scitotenv.2020.136537
Kogure, 2005, Impacts of macrobenthic bioturbation in marine sediment on bacterial metabolic activity, Microbes Environ., 20, 191, 10.1264/jsme2.20.191
Kristensen, 1984, Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlying water, J. Exp. Mar. Biol. Ecol., 75, 171, 10.1016/0022-0981(84)90179-5
Kristensen, 2001, Decomposition of plant materials in marine sediments exposed to different electron acceptors (O2, NO3− and SO42−) with emphasis on substrate origin, degradation kinetics and the role of bioturbation, Geochim. Cosmochim. Acta, 65, 419, 10.1016/S0016-7037(00)00532-9
Kristensen, 2005, Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions
Kristensen, 2012, What is bioturbation? The need for a precise definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser., 446, 285, 10.3354/meps09506
Lalonde, 2010, Investigating the geochemical impact of burrowing animals: proton and cadmium adsorption onto the mucous lining of Terebellid polychaete worms, Chem. Geol., 271, 44, 10.1016/j.chemgeo.2009.12.010
Li, 2014, Insight into the roles of microbial extracellular polymer substances in metal biosorption, Bioresour. Technol., 160, 15, 10.1016/j.biortech.2013.11.074
Lipiec, 2016, Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts, Front. Microbiol., 7, 1361, 10.3389/fmicb.2016.01361
Marsh, 1966, Simple charring method for determination of lipids, J. Lipid Res., 7, 574, 10.1016/S0022-2275(20)39274-9
Mermillod-Blondin, 2006, Ecosystem engineering the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats, Aquat. Sci., 68, 434, 10.1007/s00027-006-0858-x
Moraes, 2006, Antioxidant properties of the mucus secreted by Laeonereis acuta (Polychaeta, Nereididae): a defense against environmental pro-oxidants?, Comp. Biochem. Physiol. C, 142, 293
Muthu, 2017, Exploiting microbial polysaccharides for biosorption of trace elements in aqueous environments — scope for expansion via nanomaterial intervention, Polymers, 9, 721, 10.3390/polym9120721
Pennafirme, 2015, Microbial biofilm study by synchrotron X-ray microscopy, Rad. Phys. Chem, 116, 116, 10.1016/j.radphyschem.2015.05.040
Pennafirme, 2019, Monitoring bioturbation by a small marine polychaete using microcomputed tomography, Micron, 121, 77, 10.1016/j.micron.2019.03.004
Raposo, 2018, Benthic foraminiferal and organic matter compounds as proxies of environmental quality in a tropical coastal lagoon: The Itaipu lagoon (Brazil), Mar. Pollut. Bull., 129, 114, 10.1016/j.marpolbul.2018.02.018
Remaili, 2018, Contrasting effects of bioturbation on metal toxicity of contaminated sediments results in misleading interpretation of the AVS–SEM metal-sulfide paradigm, Environ. Sci.-Proc. Imp., 20, 1285
Rice, 1982, The detritus nitrogen problem: new observations and perspectives from organic geochemistry, Mar. Ecol. Prog. Ser., 9, 153, 10.3354/meps009153
da Rosa, 2005, Antioxidant mechanisms of the nereidid Laeonereis acuta (Annelida: Polychaeta) to cope with environmental hydrogen peroxide, Physiol. Biochem. Zool., 78, 641, 10.1086/430229
Sasaki, 2014, Effects of the burrowing mud shrimp, Upogebia yokoyai, on carbon flow and microbial activity on a tidal flat, Ecol. Res., 29, 493, 10.1007/s11284-014-1149-y
Stubberfield, 1990, A comparison of tetrazolium reduction and FDA hydrolysis with other measures of microbial activity, J. Microbiol. Methods, 12, 151, 10.1016/0167-7012(90)90026-3
Tian, 2020, Effects of tubificid bioturbation on bioaccumulation of cu and Zn released from sediment by aquatic organisms, Sci. Total Environ., 742