Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress

Vivek Sharma1, Shakeel Ahmed Mohammed1, Nisha Devi1, Gourav Vats1, Hardeep Singh Tuli1, Adesh K. Saini1, Yashika W. Dhir1, Saru Dhir1, Bharat Singh1
1Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

Tóm tắt

AbstractIn the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.

Từ khóa


Tài liệu tham khảo

Acosta-Martínez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D, Cox S (2014) Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol 84:69–82. https://doi.org/10.1016/j.apsoil.2014.06.005

Aguilar E, Cutrona C, Del Toro FJ, Vallarino JG, Osorio S, Pérez-Bueno ML, Barón M, Chung BN, Canto T, Tenllado F (2017) Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant Cell Environ 40:2909–2930. https://doi.org/10.1111/pce.13028

Alfenas-Zerbini P, Maia IG, Fávaro RD, Cascardo JC, Brommonschenkel SH, Zerbini FM (2009) Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant Microbe Interact 22:352–361. https://doi.org/10.1094/mpmi-22-3-0352

Alster CJ, German DP, Lu Y, Allison SD (2013) Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol Biochem 64:68–79. https://doi.org/10.1016/j.soilbio.2013.03.034

Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Ann Rev Phytopathol 38:145–180. https://doi.org/10.1146/annurev.phyto.38.1.145

Anfoka G, Moshe A, Fridman L, Amrani L, Rotem O, Kolot M, Zeidan M, Czosnek H, Gorovits R (2016) Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep 6:19715. https://doi.org/10.1038/srep19715

Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77. https://doi.org/10.1016/j.plaphy.2020.08.042

Armstrong A, Valverde A, Ramond JB, Makhalanyane TP, Jansson JK, Hopkins DW, Aspray TJ, Seely M, Trindade MI, Cowan DA (2016) Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci Rep 6:34434. https://doi.org/10.1038/srep34434

Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82. https://doi.org/10.1016/j.jare.2020.07.003

Audil G, Ajaz Ahmad L, Noor Ul Islam W (2019) Biotic and Abiotic Stresses in Plants. In: Alexandre Bosco de O (ed) Abiotic and Biotic Stress in Plants. IntechOpen, Rijeka, p Ch. 1. https://doi.org/10.5772/intechopen.85832

Bachar A, Al-Ashhab A, Soares MI, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient. Microb Ecol 60:453–461. https://doi.org/10.1007/s00248-010-9727-1

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

Baebler S, Krecic-Stres H, Rotter A, Kogovsek P, Cankar K, Kok EJ, Gruden K, Kovac M, Zel J, Pompe-Novak M, Ravnikar M (2009) PVY(NTN) elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10:263–275. https://doi.org/10.1111/j.1364-3703.2008.00530.x

Balasooriya WK, Denef K, Huygens D, Boeckx P (2014) Translocation and turnover of rhizodeposit carbon within soil microbial communities of an extensive grassland ecosystem. Plant Soil 376:61–73. https://doi.org/10.1007/s11104-012-1343-z

Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. https://doi.org/10.1038/ismej.2013.104

Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861. https://doi.org/10.1128/jb.183.23.6852-6861.2001

Bashan Y (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant-growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228. https://doi.org/10.1016/S0038-0717(97)00187-9

Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M (2018) Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. Front Plant Sci 9:703. https://doi.org/10.3389/fpls.2018.00703

Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 6:34768. https://doi.org/10.1038/srep34768

Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S, Jan AT (2020) Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front Microbiol 11:1952. https://doi.org/10.3389/fmicb.2020.01952

Bilal R, Rasul G, Arshad M, Malik K (1993) Attachment, colonization and proliferation of Azospirillum brasilense and Enterobacter spp. on root surface of grasses. World J Microbiol Biotechnol 9:63–69. https://doi.org/10.1007/BF00656519

Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

Blanc S, Michalakis Y (2016) Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr Opin Insect Sci 16:36–43. https://doi.org/10.1016/j.cois.2016.05.007

Blazewicz SJ, Schwartz E, Firestone MK (2014) Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95:1162–1172. https://doi.org/10.1890/13-1031.1

Bolton MD (2009) Primary metabolism and plant defense–fuel for the fire. Mol Plant Microbe Interact 22:487–497. https://doi.org/10.1094/mpmi-22-5-0487

Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, Brodie EL (2013) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394. https://doi.org/10.1038/ismej.2012.113

Bouskill NJ, Wood TE, Baran R, Hao Z, Ye Z, Bowen BP, Lim HC, Nico PS, Holman HY, Gilbert B, Silver WL, Northen TR, Brodie EL (2016a) Belowground Response to Drought in a Tropical Forest Soil. II. Change in Microbial Function Impacts Carbon Composition. Front Microbiol 7:323. https://doi.org/10.3389/fmicb.2016.00323

Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H, Zhou J, Nostrand JD, Nico P, Northen TR, Silver WL, Brodie EL (2016b) Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism. Front Microbiol 7:525. https://doi.org/10.3389/fmicb.2016.00525

Calil IP, Fontes EPB (2017) Plant immunity against viruses: antiviral immune receptors in focus. Ann Bot 119:711–723. https://doi.org/10.1093/aob/mcw200

Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564. https://doi.org/10.1038/srep41564

Cheng C, Gao X, Feng B, Sheen J, Shan L, He P (2013) Plant immune response to pathogens differs with changing temperatures. Nature Commun 4:2530. https://doi.org/10.1038/ncomms3530

Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, Mapelli F, Blilou I, Borin S, Boudabous A, Cherif A, Daffonchio D, Ouzari H (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678. https://doi.org/10.1111/1758-2229.12304

Chung BN, Lee JH, Kang BC, Koh SW, Joa JH, Choi KS, Ahn JJ (2018) HR-Mediated Defense Response is Overcome at High Temperatures in Capsicum Species. Plant Pathol J 34:71–77. https://doi.org/10.5423/ppj.Nt.06.2017.0120

Chung BN, Choi KS, Ahn JJ, Joa JH, Do KS, Park KS (2015) Effects of Temperature on Systemic Infection and Symptom Expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris). Plant Pathol J 31:363–370. https://doi.org/10.5423/ppj.Nt.06.2015.0107

Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90. https://doi.org/10.1111/ppl.12221

Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811. https://doi.org/10.1111/nph.13697

Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res 112:G04S17. https://doi.org/10.1029/2006JG000311

Corrales-Gutierrez M, Medina-Puche L, Yu Y, Wang L, Ding X, Luna AP, Bejarano ER, Castillo AG, Lozano-Duran R (2020) The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol J 18:1121–1123. https://doi.org/10.1111/pbi.13280

Curiel Yuste J, Fernandez-Gonzalez AJ, Fernandez-Lopez M, Ogaya R, Penuelas J, Sardans J, Lloret F (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol Biochem 69:223–233. https://doi.org/10.1016/j.soilbio.2013.10.045

Davis TS, Bosque-Pérez NA, Foote NE, Magney T, Eigenbrode SD (2015) Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52:1392–1401. https://doi.org/10.1111/1365-2664.12484

de la Torre F, Cañas RA, Pascual MB, Avila C, Cánovas FM (2014) Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot 65:5527–5534. https://doi.org/10.1093/jxb/eru240

Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R (2021) Fight hard or die trying: when plants face pathogens under heat stress. New Phytol 229:712–734. https://doi.org/10.1111/nph.16965

Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP (2014) Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol 90:844–857. https://doi.org/10.1111/1574-6941.12438

Devarajan AK, Muthukrishanan G, Truu J, Truu M, Ostonen I, Kizhaeral S S, Panneerselvam P, Kuttalingam Gopalasubramanian S (2021) The Foliar Application of Rice Phyllosphere Bacteria induces Drought-Stress Tolerance in Oryza sativa (L.). Plants (Basel) 10:387. https://doi.org/10.3390/plants10020387

Dodd IC, Jiang F, Teijeiro RG, Belimov AA, Hartung W (2009) The rhizosphere bacterium Variovorax paradoxus 5C–2 containing ACC deaminase does not increase systemic ABA signaling in maize (Zea mays L.). Plant Signal Behav 4:519–521. https://doi.org/10.4161/psb.4.6.8574

Dubey S, Khatri S, Bhattacharjee A, Sharma S (2022) Multiple passaging of rhizospheric microbiome enables mitigation of salinity stress in Vigna radiata. Plant Growth Regul 97:537–549. https://doi.org/10.1007/s10725-022-00820-1

Elbeshehy EK, Youssef SA, Elazzazy AM (2015) Resistance induction in pumpkin Cucurbita maxima L. against Watermelon mosaic potyvirus by plant growth-promoting rhizobacteria. Biocontrol Science and Technology 25:525–542. https://doi.org/10.1080/09583157.2014.994198

El-Esawi MA, Alaraidh IA, Alsahli AA, Alzahrani SM, Ali HM, Alayafi AA, Ahmad M (2018) Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. Int J Mol Sci 19:3310. https://doi.org/10.3390/ijms19113310

Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184:39–52. https://doi.org/10.1104/pp.20.00433

Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112. https://doi.org/10.1016/j.agee.2017.11.007

Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148. https://doi.org/10.3389/fmicb.2018.00148

Etesami H, Glick BR (2020) Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Envir Exp Botany 178:104124. https://doi.org/10.1016/j.envexpbot.2020.104124

Falk BW, Nouri S (2020) Special Issue: "Plant Virus Pathogenesis and Disease Control". Viruses 12 https://doi.org/10.3390/v12091049

Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management A review. Agron Sustain Dev 35:461–481. https://doi.org/10.1007/s13593-015-0287-0

Fesenko I, Spechenkova N, Mamaeva A, Makhotenko AV, Love AJ, Kalinina NO, Taliansky M (2021) Role of the methionine cycle in the temperature-sensitive responses of potato plants to potato virus Y. Mol Plant Pathol 22:77–91. https://doi.org/10.1111/mpp.13009

Firmansyah D, Hidayat S, Widodo W (2017) Chitosan and Plant Growth PromotingRhizobacteria Application to Control Squash mosaic virus on Cucumber Plants. Asian Journal of Plant Pathology 11:148–155. https://doi.org/10.3923/AJPPAJ.2017.148.155

Food and Agriculture Organization of the United Nation (2022) Global Soil Partnership, Highlight Archives, World Soil Day: FAO highlights the threat of soil salinization to global food security. https://www.fao.org/newsroom/detail/world-soil-day-fao-highlights-threat-of-soilsalinization-to-food-security-031221/en. Accessed 15 June 2023

Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity. Front Microbiol 7:150. https://doi.org/10.3389/fmicb.2016.00150

Franklin J, Serra-Diaz JM, Syphard AD, Regan HM (2016) Global change and terrestrial plant community dynamics. Proc Natl Acad Sci U S A 113:3725–3734. https://doi.org/10.1073/pnas.1519911113

Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change 3:395–398. https://doi.org/10.1038/nclimate1796

Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A (2014) Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol 201:916–927. https://doi.org/10.1111/nph.12569

Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S (2015) Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26. PLoS One 10:e0130456. https://doi.org/10.1371/journal.pone.0130456

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80

Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8 https://doi.org/10.1093/aobpla/plw055

Ghoshal B, Sanfaçon H (2014) Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology 456–457:188–197. https://doi.org/10.1016/j.virol.2014.03.026

Goldstein AH (1986) Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. Am J Altern Agric 1:51–57. https://doi.org/10.1017/S0889189300000886

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635–674. https://doi.org/10.1007/s11427-020-1683-x

Gong Z (2021) Plant abiotic stress: New insights into the factors that activate and modulate plant responses. J Integr Plant Biol 63:429–430. https://doi.org/10.1111/jipb.13079

González R, Butković A, Elena SF (2020) From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Adv Virus Res 106:85–121. https://doi.org/10.1016/bs.aivir.2020.01.003

González R, Butković A, Escaray FJ, Martínez-Latorre J, Melero Í, Pérez-Parets E, Gómez-Cadenas A, Carrasco P, Elena SF (2021) Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proc Natl Acad Sci U S A 118:e2020990118. https://doi.org/10.1073/pnas.2020990118

Gorovits R, Sobol I, Altaleb M, Czosnek H, Anfoka G (2019) Taking advantage of a pathogen: understanding how a virus alleviates plant stress response. Phytopathol Res 1:1–6. https://doi.org/10.1186/s42483-019-0028-4

Gul S, Javed S, Azeem M, Aftab A, Anwaar N, Mehmood T, Zeshan B (2023) Application of Bacillus subtilis for the Alleviation of Salinity Stress in Different Cultivars of Wheat (Tritium aestivum L.). Agronomy 13:437. https://doi.org/10.3390/agronomy13020437

Guo H, Gu L, Liu F, Chen F, Ge F, Sun Y (2019) Aphid-borne Viral Spread Is Enhanced by Virus-induced Accumulation of Plant Reactive Oxygen Species. Plant Physiol 179:143–155. https://doi.org/10.1104/pp.18.00437

Haldar S, Sengupta S (2015) Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiol J 9:1–7. https://doi.org/10.2174/1874285801509010001

Haque MM, Biswas MS, Mosharaf MK, Haque MA, Islam MS, Nahar K, Islam MM, Shozib HB, Islam MM, Ferdous-E-Elahi (2022) Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Sci Rep 12:5599. https://doi.org/10.1038/s41598-022-09519-9

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen X, Zingg A, Graf-Pannatier E, Rigling A, Frey B (2017) A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 26:1190–1206. https://doi.org/10.1111/mec.13995

Hasegawa H, Chatterjee A, Cui Y, Chatterjee A (2005) Elevated temperature enhances virulence of Erwinia carotovora subsp. carotovora strain EC153 to plants and stimulates production of the quorum sensing signal, N-acyl homoserine lactone, and extracellular proteins. Appl Environ Microbiol 71:4655–4663. https://doi.org/10.1128/aem.71.8.4655-4663.2005

Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather Clim Extremes 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

He M, He C-Q, Ding N-Z (2018) Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

Hernández-Walias FJ, García M, Moreno M, Giannoukos I, González N, Sanz-García E, Necira K, Canto T, Tenllado F (2022) Transgenerational tolerance to salt and osmotic stresses induced by plant virus infection. Int J Mol Sci 23:12497. https://doi.org/10.3390/ijms232012497

Horino O, Mew TW, Yamada T (1982) The effect of temperature on the development of bacterial leaf blight on rice. Japanese J Phytopathol 48:72–75. https://doi.org/10.3186/jjphytopath.48.72

Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173. https://doi.org/10.1016/j.soilbio.2012.03.026

Hulten E, Jackson JL, Douglas K, George S, Villines TC (2006) The effect of early, intensive statin therapy on acute coronary syndrome: a meta-analysis of randomized controlled trials. Arch Intern Med 166:1814–1821. https://doi.org/10.1001/archinte.166.17.1814

Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y, Ballias P, Clément C, Jacquard C, Vaillant-Gaveau N, Aït Barka E (2018) Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Front Plant Sci 9:1397 https://doi.org/10.3389/fpls.2018.01397

Janda M, Lamparová L, Zubíková A, Burketová L, Martinec J, Krčková Z (2019) Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana. Mol Plant Pathol 20:1005–1012. https://doi.org/10.1111/mpp.12799

Javed M, Arshad M (1997) Growth promotion of two wheat cultivars by plant growth promoting rhizobacteria. Pak J Bot 29:243–248

Jensen KD, Beier C, Michelsen A, Emmett BA (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl Soil Ecol 24:165–176. https://doi.org/10.1016/S0929-1393(03)00091-X

Jin S, Song Y, Deng W, Gordon MP, Nester E (1993) The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835. https://doi.org/10.1128/jb.175.21.6830-6835.1993

Jones LM, Koehler AK, Trnka M, Balek J, Challinor AJ, Atkinson HJ, Urwin PE (2017) Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Glob Chang Biol 23:4497–4507. https://doi.org/10.1111/gcb.13676

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124. https://doi.org/10.1016/j.plaphy.2014.09.001

Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84. https://doi.org/10.1038/nature13604

Khalvandi M, Siosemardeh A, Roohi E, Keramati S (2021) Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon 7:e05908. https://doi.org/10.1016/j.heliyon.2021.e05908

Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808. https://doi.org/10.1099/vir.0.83328-0

Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207. https://doi.org/10.3389/fpls.2014.00207

Kissoudis C, Sunarti S, van de Wiel C, Visser RG, van der Linden CG, Bai Y (2016) Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J Exp Bot 67:5119–5132. https://doi.org/10.1093/jxb/erw285

Knoth JL, Kim S-H, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609. https://doi.org/10.1111/nph.12536

Kohler J, Caravaca F, Roldán A (2009) Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Appl Soil Ecol 42:160–165. https://doi.org/10.1016/j.apsoil.2009.03.007

Kong HG, Shin TS, Kim TH, Ryu CM (2018) Stereoisomers of the Bacterial Volatile Compound 2,3-Butanediol Differently Elicit Systemic Defense Responses of Pepper against Multiple Viruses in theField. Front Plant Sci 9:90. https://doi.org/10.3389/fpls.2018.00090

Kubota K, Ng JC (2016) Lettuce chlorosis virus P23 Suppresses RNA Silencing and Induces Local Necrosis with Increased Severity at Raised Temperatures. Phytopathology 106:653–662. https://doi.org/10.1094/phyto-09-15-0219-r

Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V VT, Sheoran S, T RK, Longmei N, Rakshit S, Siddique KHM (2022) Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 128:497–518. https://doi.org/10.1038/s41437-022-00516-2

Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L (2017) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS One 12:e0186786. https://doi.org/10.1371/journal.pone.0186786

Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863. https://doi.org/10.1128/aem.68.4.1854-1863.2002

Li Z, Liu H, Ding Z, Yan J, Yu H, Pan R, Hu J, Guan Y, Hua J (2020) Low Temperature Enhances Plant Immunity via Salicylic Acid Pathway Genes That Are Repressed by Ethylene. Plant Physiol 182:626–639. https://doi.org/10.1104/pp.19.01130

Lichtfouse E (2009) Climate change, intercropping, pest control and beneficial microorganisms. Springer. https://doi.org/10.1007/978-90-481-2716-0

Liptzin D, Silver WL, Detto M (2011) Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests. Ecosystems 14:171–182. https://doi.org/10.1007/s10021-010-9402-x

Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, Zhang Y, Wang M, Deng Y, Wang E, He Y, Bäurle I, Li J, Cao X, He Z (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29:379–390. https://doi.org/10.1038/s41422-019-0145-8

Liu X, Le Roux X, Salles JF (2022) The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25:103821. https://doi.org/10.1016/j.isci.2022.103821

Llamas-Llamas ME, Zavaleta-Mejia E, Gonzalez-Hernandez VA, Cervantes-Diaz L, Santizo-Rincon JA, Ochoa-Martinez DL (1998) Effect of temperature on symptom expression and accumulation of tomato spotted wilt virus in different host species. Plant Pathol 47:341–347. https://doi.org/10.1046/j.1365-3059.1998.00249.x

Ma Y, Dias MC, Freitas H (2020) Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front Plant Sci 11:591911. https://doi.org/10.3389/fpls.2020.591911

Mahawar L, Shekhawat GS (2019) EsHO 1 mediated mitigation of NaCl induced oxidative stress and correlation between ROS, antioxidants and HO 1 in seedlings of Eruca sativa: underutilized oil yielding crop of arid region. Physiol Mol Biol Plants 25:895–904. https://doi.org/10.1007/s12298-019-00663-7

Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M (2018) Interactive Responses of Potato (Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y. Front Microbiol 9:2582 https://doi.org/10.3389/fmicb.2018.02582

Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK (2022) Mechanisms of Microbial Plant Protection and Control of Plant Viruses. Plants (Basel). 11(24):3449. https://doi.org/10.3390%2Fplants11243449

Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479. https://doi.org/10.1371/journal.pone.0048479

Markham KK, Greenham K (2021) Abiotic stress through time. New Phytol 231:40–46. https://doi.org/10.1111/nph.17367

Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515. https://doi.org/10.1126/science.1136237

Marschner P, Grierson PF, Rengel Z (2005) Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Appl Soil Ecol 28:191–201. https://doi.org/10.1016/j.apsoil.2004.09.001

Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, Goulden ML, Treseder KK, Allison SD (2017) Microbial legacies alter decomposition in response to simulated global change. ISME J 11:490–499. https://doi.org/10.1038/ismej.2016.122

Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543. https://doi.org/10.1007/s00425-010-1196-8

Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G, (1998) Salicylic Acid Biosynthetic Genes Expressed in Pseudomonasfluorescens Strain P3 Improve the Induction of Systemic Resistance in Tobacco AgainstTobacco Necrosis Virus. Phytopathology 88(7):678–84. https://doi.org/10.1094/PHYTO.1998.88.7.678

Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45. https://doi.org/10.1016/j.apsoil.2017.12.004

Mishra S, Sahu PK, Agarwal V, Singh N (2021) Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol 105:6579–6596. https://doi.org/10.1007/s00253-021-11527-0

Mishra R, Shteinberg M, Shkolnik D, Anfoka G, Czosnek H, Gorovits R (2022) Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Mol Plant Pathol 23:475–488. https://doi.org/10.1111/mpp.13172

Mohammadipanah F, Wink J (2016) Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity. Front Microbiol 6:1541. https://doi.org/10.3389/fmicb.2015.01541

Moldakimova N, Mukiyanova G, Yarmolinsky D, Brychkova G, Scholthof H, Sagi M, Omarov R (2012) Effect of salinity on viral disease spread in plants. J Stress Physiol Biochem 8:S17

Moshe A, Gorovits R, Liu Y, Czosnek H (2016) Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. Mol Plant Pathol 17:247–260. https://doi.org/10.1111/mpp.12275

Moury B, Selassie KG, Marchoux G, Daubèze A-M, Palloix A (1998) High temperature effects on hypersensitive resistance to tomato spotted wilt tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Eur J Plant Pathol 104:489–498. https://doi.org/10.1023/A:1008618022144

Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol. 55(11):1302–1309. https://doi.org/10.1139/w09-092

Nancarrow N, Constable FE, Finlay KJ, Freeman AJ, Rodoni BC, Trebicki P, Vassiliadis S, Yen AL, Luck JE (2014) The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Res 186:97–103. https://doi.org/10.1016/j.virusres.2013.12.023

Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704. https://doi.org/10.1038/ismej.2017.118

Nepomoceno TAR, Carniatto I (2023) Correlations between climate resilience in family farming and sustainable rural development. Ambio:1-15 https://doi.org/10.1007/s13280-023-01848-x

Nessner Kavamura V, Taketani RG, Lançoni MD, Andreote FD, Mendes R, Soares de Melo I (2013) Water regime influences bulk soil and Rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS One 8:e73606. https://doi.org/10.1371/journal.pone.0073606

Newsham K, Fitter A, Watkinson A (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411. https://doi.org/10.1016/s0169-5347(00)89157-0

Niu SQ, Li HR, Paré PW, Aziz M, Wang SM, Shi H, Li J, Han QQ, Guo SQ, Li J, Guo Q, Ma Q, Zhang JL (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230. https://doi.org/10.1007/s11104-015-2767-z

Obrępalska-Stęplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P (2015) Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. Front Plant Sci 6:903. https://doi.org/10.3389/fpls.2015.00903

Park HJ, Kim WY, Yun DJ (2016) A New Insight of Salt Stress Signaling in Plant. Mol Cells 39:447–459. https://doi.org/10.14348/molcells.2016.0083

Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12:e0173203. https://doi.org/10.1371/journal.pone.0173203

Patel T, Saraf M (2017) Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact 12:480–487. https://doi.org/10.1080/17429145.2017.1392625

Pillay V, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361. https://doi.org/10.1139/m97-049

Prasad A, Sett S, Prasad M (2022) Plant-virus-abiotic stress interactions in plants: a complex interplay. Environ Exp Botany 199:104869. https://doi.org/10.1016/j.envexpbot.2022.104869

Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M (2019a) Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 39:587–601. https://doi.org/10.1080/07388551.2019.1597830

Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019b) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR amelioration in sustainable agriculture:129-157. https://doi.org/10.1016/B978-0-12-815879-1.00007-0

Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. https://doi.org/10.1104/pp.113.221044

Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507. https://doi.org/10.3389/fpls.2015.00507

Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS (2013) Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci 14:9497–9513. https://doi.org/10.3390/ijms14059497

Ray S, Casteel CL (2022) Effector-mediated plant-virus-vector interactions. Plant Cell 34:1514–1531. https://doi.org/10.1093/plcell/koac058

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581. https://doi.org/10.1126/science.1072191

Roberts KE, Hadfield JD, Sharma MD, Longdon B (2018) Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathog 14:e1007185. https://doi.org/10.1371/journal.ppat.1007185

Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front Plant Sci 11:1092. https://doi.org/10.3389/fpls.2020.01092

Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteriasystemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid andNPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 39:381–392. https://doi.org/10.1111/j.1365-313x.2004.02142.x

Saghafi D, Ghorbanpour M, Shirafkan Ajirloo H, Asgari Lajayer B (2019) Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant Rhizobium strains containing ACC-deaminase activity. Plant Physiol Rep 24:225–235. https://doi.org/10.1007/s40502-019-00444-0

Sahu PP, Rai NK, Chakraborty S, Singh M, Chandrappa PH, Ramesh B, Chattopadhyay D, Prasad M (2010) Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544. https://doi.org/10.1111/j.1364-3703.2010.00630.x

Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Reg 62:21–30. https://doi.org/10.1007/s10725-010-9479-4

Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954. https://doi.org/10.1111/j.1364-3703.2011.00752.x

Schwartz E, Adair KL, Schuur EA (2007) Bacterial community structure correlates with decomposition parameters along a Hawaiian precipitation gradient. Soil Biol Biochem 39:2164–2167. https://doi.org/10.1016/j.soilbio.2007.02.013

Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants (Basel) 10:259. https://doi.org/10.3390/plants10020259

Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Botany 136:68–77. https://doi.org/10.1016/j.envexpbot.2017.01.010

Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, Schadt CW (2013) A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS One 8:e76382. https://doi.org/10.1371/journal.pone.0076382

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587. https://doi.org/10.1186/2193-1801-2-587

Shen L, Wang F, Yang J, Qian Y, Dong X, Zhan H (2013) Control of tobacco mosaic virus by Pseudomonas fluorescens CZ powder in green houses and the field. Crop Prot 56:87–90

Shokri D, Emtiazi G (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol 61:217–225. https://doi.org/10.1007/s00284-010-9600-y

Shteinberg M, Mishra R, Anfoka G, Altaleb M, Brotman Y, Moshelion M, Gorovits R, Czosnek H (2021) Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought. Cells 10:2875. https://doi.org/10.3390/cells10112875

Singh A, Permar V, Basavaraj Tomar BS, Praveen S (2018) Effect of Temperature on Symptoms Expression and Viral RNA Accumulation in Groundnut Bud Necrosis Virus Infected Vigna unguiculata. Iran J Biotechnol 16:e1846. https://doi.org/10.15171/ijb.1846

Sinha R, Gupta A, Senthil-Kumar M (2016) Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea. Front Plant Sci 7:902. https://doi.org/10.3389/fpls.2016.00902

Sinha KV, Das SS, Sanan-Mishra N (2021) Overexpression of a RNA silencing suppressor, B2 protein encoded by Flock House virus, in tobacco plants results in tolerance to salt stress. Phytoparasitica 49:299–316. https://doi.org/10.1007/S12600-020-00847-Y

SkZ A, Vardharajula S, Vurukonda SSKP (2018) Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Ann Microbiol 68:331–349. https://doi.org/10.1007/s13213-018-1341-3

Srivastav AL, Dhyani R, Ranjan M, Madhav S, Sillanpää M (2021) Climate-resilient strategies for sustainable management of water resources and agriculture. Environ Sci Pollut Res Int 28:41576–41595. https://doi.org/10.1007/s11356-021-14332-4

Sunita K, Mishra I, Mishra J, Prakash J, Arora NK (2020) Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Front Microbiol 11:567768. https://doi.org/10.3389/fmicb.2020.567768

Suntio T, Mäkinen K (2012) Abiotic stress responses promote Potato virus A infection in Nicotiana benthamiana. Mol Plant Pathol 13:775–784. https://doi.org/10.1111/j.1364-3703.2012.00786.x

Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117. https://doi.org/10.1016/j.apsoil.2017.09.030

Taketani RG, Lançoni MD, Kavamura VN, Durrer A, Andreote FD, Melo IS (2017) Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid Rhizosphere System. Microbial Ecol 73:153–161. https://doi.org/10.1007/s00248-016-0835-4

Tatineni S, Afunian MR, Hilf ME, Gowda S, Dawson WO, Garnsey SM (2009) Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology 99:423–431. https://doi.org/10.1094/phyto-99-4-0423

Timm CM, Pelletier DA, Jawdy SS, Gunter LE, Henning JA, Engle N, Aufrecht J, Gee E, Nookaew I, Yang Z, Lu TY, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Weston DJ (2016) Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Front Plant Sci 7:497. https://doi.org/10.3389/fpls.2016.00497

Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6:e17968. https://doi.org/10.1371/journal.pone.0017968

Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916. https://doi.org/10.1007/s00374-011-0598-5 

Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6–20. https://doi.org/10.1104/pp.106.084517

Treseder KK, Kivlin SN, Hawkes CV (2011) Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecol Lett 14:933–938. https://doi.org/10.1111/j.1461-0248.2011.01650.x

Tsai W-A, Shafiei-Peters JR, Mitter N, Dietzgen RG (2022) Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens 11:200. https://doi.org/10.3390/pathogens11020200

Tuttle JR, Idris AM, Brown JK, Haigler CH, Robertson D (2008) Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol 148:41–50. https://doi.org/10.1104/pp.108.123869

Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313. https://doi.org/10.1139/cjm-2014-0668

Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol (Stuttg) 17:288–293. https://doi.org/10.1111/plb.12173

Uzma M, Iqbal A, Hasnain S (2022) Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata. PLoS One 17:e0262932. https://doi.org/10.1371/journal.pone.0262932

van Munster M (2020) Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 12:216. https://doi.org/10.3390/v12020216

van Zelm E, Zhang Y, Testerink C (2020) Salt Tolerance Mechanisms of Plants. Annu Rev Plant Biol 71:403–433. https://doi.org/10.1146/annurev-arplant-050718-100005

Varela ALN, Oliveira JTA, Komatsu S, Silva RGG, Martins TF, Souza PFN, Lobo AKM, Vasconcelos IM, Carvalho FEL, Silveira JAG (2019) A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. J Proteomics 194:200–217. https://doi.org/10.1016/j.jprot.2018.11.015

Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9:e114744. https://doi.org/10.1371/journal.pone.0114744

Velásquez AC, Castroverde CDM, He SY (2018) Plant-Pathogen Warfare under Changing Climate Conditions. Curr Biol 28:R619-r634. https://doi.org/10.1016/j.cub.2018.03.054

Vigani G, Rolli E, Marasco R, Dell'Orto M, Michoud G, Soussi A, Raddadi N, Borin S, Sorlini C, Zocchi G, Daffonchio D (2018) Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H(+) -pumping pyrophosphatase in pepper plants. Environ Microbiol 21:3212-3228. https://doi.org/10.1111/1462-2920.14272

Volkening JD, Stecker KE, Sussman MR (2019) Proteome-wide Analysis of Protein Thermal Stability in the Model Higher Plant Arabidopsis thaliana. Mol Cell Proteomics 18:308–319. https://doi.org/10.1074/mcp.RA118.001124

Waldon HB, Jenkins MB, Virginia RA, Harding EE (1989) Characteristics of woodland rhizobial populations from surface-and deep-soil environments of the Sonoran Desert. Appl Environ Microbiol 55:3058–3064. https://doi.org/10.1128/aem.55.12.3058-3064.1989

Wang Y, Bao Z, Zhu Y, Hua J (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant Microbe Interact 22:498–506. https://doi.org/10.1094/mpmi-22-5-0498

Wang L, Jin P, Wang J, Jiang L, Shan T, Zheng Y (2015) Methyl jasmonate primed defense responses against Penicillium expansum in sweet cherry fruit. Plant Mol Biol Rep 33:1464–1471. https://doi.org/10.1007/s11105-014-0844-8

Wang S, Liang D, Li C, Hao Y, Ma F, Shu H (2012) Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Biochem 51:81–89. https://doi.org/10.1016/j.plaphy.2011.10.014

Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290. https://doi.org/10.1111/j.1574-6976.2000.tb00542.x

Westwood JH, McCann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AA, Carr JP (2013) A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Mol Plant Pathol 14:158–170. https://doi.org/10.1111/j.1364-3703.2012.00840.x

Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654. https://doi.org/10.4161/psb.5.6.11398

Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921. https://doi.org/10.1111/j.1469-8137.2008.02627.x

Xu J, Li XL, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78:8056–8061. https://doi.org/10.1128/aem.01276-12

Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004

Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut Res Int 25:23236–23250. https://doi.org/10.1007/s11356-018-2381-8

Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D (2022) Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants (Basel) 11(3):386. https://doi.org/10.3390/plants11030386

Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei ZM (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371. https://doi.org/10.1038/nature13593

Zehnder GW, Yao C, Murphy JF, Sikora ER, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 45(1):127–137. https://doi.org/10.1023/A%3A1009923702103

Zhang X, Liu P, Qing C, Yang C, Shen Y, Ma L (2021) Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ 9:e10765. https://doi.org/10.7717/peerj.10765

Zhang JL, Aziz M, Qiao Y, Han QQ, Li J, Wang YQ, Shen X, Wang SM, Paré PW (2014) Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat. Crop Pasture Sci 65:423–427. https://doi.org/10.1071/CP13456

Zhang X, Zhang X, Singh J, Li D, Qu F (2012) Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J Virol 86:6847–6854. https://doi.org/10.1128/jvi.00497-12

Zhang S, Wu QR, Liu LL, Zhang HM, Gao JW, Pei ZM (2020) Osmotic stress alters circadian cytosolic Ca2+ oscillations and OSCA1 is required in circadian gated stress adaptation. Plant Signal Behav 15:1836883. https://doi.org/10.1080/15592324.2020.1836883

Zhao C, Zhang H, Song C, Zhu J-K, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovation (Camb) 1:100017. https://doi.org/10.1016/j.xinn.2020.100017

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021) Regulation of Plant Responses to Salt Stress. Int J Mol Sci 22 https://doi.org/10.3390/ijms22094609

Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S, Zhou Z, Dai S (2018) Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. Front Plant Sci 9:800. https://doi.org/10.3389/fpls.2018.00800

Zhou Y, Frey TK, Yang JJ (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46:1–17. https://doi.org/10.1016/j.ceca.2009.05.005

Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844. https://doi.org/10.1371/journal.ppat.1000844

Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011:615032. https://doi.org/10.1155/2011/615032