Unveiling the adsorption mechanism of organic foulants on anion exchange membrane in reverse electrodialysis using electrochemical methods
Tóm tắt
This study investigates the fouling of anion exchange membrane by organic foulants in fresh water, which is one of the causes of performance degradation of reverse electrodialysis (RED). Three organic foulants, namely sodium alginate (SA), humic acid (HA), and sodium dodecylbenzene sulfonate (SDBS) are selected and the behavior of adsorption fouling of the selected organic foulants is monitored, analyzed and identified using physicochemical (ion exchange capacity (IEC), water uptake (WU)) and electrochemical (permselectivity, electrochemical impedance spectroscopy (EIS), j-V and j-P plots) methods. Compared to the pristine membrane, the resistance of anion exchange membrane increases and the selective permeability, IEC, and WU decrease after fouling of the membrane, which in turn affects the RED cell performance. SDBS, an aromatic substance, shows a higher adsorption capacity as compared to the other two foulants, and therefore causes severe degradation. Among the two aliphatic substances, namely, HA and SA, HA exhibited higher adsorption capacity than SA because it has fewer carboxylic groups. To summarize, the degradation behavior of the anion exchange membrane was clearly different based on the characteristics of each organic foulant.
Tài liệu tham khảo
Connolly D, Lund H, Mathisen BV, Pican E, Leahy M (2012) The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renew Energy 43:47–60. https://doi.org/10.1016/j.renene.2011.11.003
Mei Y, Tang CY (2017) Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 425:156–174. https://doi.org/10.1016/j.desal.2017.10.021
Logan BE, Elimelech M (2012) Membrane-based processes for sustainable power generation using water. Nature 488:313–319. https://doi.org/10.1038/nature11477
Kwak SH, Kwon SR, Beak S, Lim SM, Joo YC, Chung TD (2016) Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient. Sci Rep 6:26416. https://doi.org/10.1038/srep2641
Veerman J, Saakes M, Metz SJ, G.J. (2009) Harmsen. Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and rive water. J Membr Sci 327:136–144. https://doi.org/10.1016/j.memsci.2008.11.015
Post JW, Veerman J, Hamelers HVM, Euverink GJW, Metz SJ, Nymeijer K, Buisman CJN (2007) Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J Membr Sci 288:218–230. https://doi.org/10.1016/j.memsci.2006.11.018
Dlugolecki P, Nymeijer K, Metz S, Wessling M (2008) Current status of ion exchange membranes for power generation from salinity gradients. J Membr Sci 319:214–222. https://doi.org/10.1016/j.memsci.2008.03.037
Post JW, Hamelers H, Buisman CJN (2008) Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ Sci Technol 42:5785–5790. https://doi.org/10.1021/es8004317
Guler E, Elizen R, Vermaas D, Saakes M, Nijmeijer K (2013) Performance-determining membrane properties in reverse electrodialysis. J Membr Sci 446:266–276. https://doi.org/10.1016/j.memsci.2013.06.045
Chang DI, Choo KH, Jung JH, Jiang L, Ahn JH, Nam MY, Kim ES, Jeong SH (2009) Foulant identification and fouling control with iron oxide adsorption in electrodialysis for the desalination of secondary effluent. Desalination 236:152–159. https://doi.org/10.1016/j.desal.2007.10.062
Tanaka N, Nagase M, Higa M (2011) Preparation of aliphatic-hydrocarbon-based anion exchange membranes and their anti-organic-fouling properties. J Membr Sci 384:27–36. https://doi.org/10.1016/j.memsci.2011.08.064
Li Q, Song J, Yu H, Li ZK, Pan XH, Yang B (2014) Investigating the microstructures and surface features of seawater RO membranes and the dependencies of fouling resistance performances. Desalination 352:109–117. https://doi.org/10.1016/j.desal.2014.08.015
Xu H, Xiao K, Wang X, Liang S, Wei C, Wen X, Huang X (2020) Outlining the roles of membrane-foulant and foulant-foulant interactions in organic fouling during microfiltration and ultrafiltration-a mini-review. Front Chem. https://doi.org/10.3389/fchem.2020.00417
Tanaka N, Nagase M, Higa M (2012) Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances. Desalination 296:81–86. https://doi.org/10.1016/j.desal.2012.04.010
Park JS, Lee HJ, Moon SH (2003) Determination of an optimum frequency of square wave power for fouling mitigation in desalting electrodialysis in the presence of humate. Sep Purif Technol 30:101–112. https://doi.org/10.1016/S1383-5866(02)00138-7
Vermaas DA, Kunteng D, Saakes M, Nijmeijer K (2013) Fouling in reverse electrodialysis under natural conditions. Water Res 47:1289–1298. https://doi.org/10.1016/j.watres.2012.11.053
Li HG, Xia HJ, Mei YX (2016) Modeling organic fouling of reverse osmosis membrane: from adsorption to fouling layer formation. Desalination 386:25–31. https://doi.org/10.1016/j.desal.2016.02.037
Kingsbury RS, Liu F, Zhu S, Boggs C, Armstrong MD, Call DF, Coronell O (2017) Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis. J Membr Sci 541:621–632. https://doi.org/10.1016/j.memsci.2017.07038
Susanto H, Fitrianingtyas M, Samsudin AM, Syakur A (2017) Experimental study of the natural organic matters effect on the power generation of reverse electrodialysis. Int J Energy Res 41:1474–1486. https://doi.org/10.1002/er.3728
Pintossi D, Saakes M, Borenman Z, Nijmeijer K (2019) Electrochemical impedance spectroscopy of a reverse electrodialysis stack: a new approach to monitoring fouling and cleaning. J Power Sources 444:227302. https://doi.org/10.1016/j.jpowsour.2019.227302
Pawlowski S, Galinha CF, Crespo JG, Velizarov S (2016) 2D fluorescence spectroscopy for monitor ing ion-exchange membrane based technologies – Reverse electrodialysis (RED). Water Res 88:184–198. https://doi.org/10.1016/j.watres.2015.10.010
Zhao F, Xu K, Ren H, Ding L, Geng J, Zhang Y (2015) Combined effects of organic matter and calcium on biofouling of nanofiltration membrane. J Membr Sci 486:177–188. https://doi.org/10.1016/j.memsci.2015.03.032
Le XT, Bui TH, Viel P, Berthelot T, Palacin S (2009) On the structure-properties relationship of the AMV anion exchange membrane. J Membr Sci 340:133–140. https://doi.org/10.1016/j.memsci.2009.05.025
Lee HJ, Hong MK, Ham SD, Cho SH, Moon SH (2009) Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic. Desalination 238:60–69. https://doi.org/10.1016/j.desal.2008.01.036
Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown NB, Guiver MD, Wu L, Xu T (2016) Highly conductive anion-exchange membranes from microporous Tröger’s base polymers. Angew Chem Int Ed 128:11671–11674. https://doi.org/10.1002/ange.201605916
Hong JG, Zhanf B, Glabman S, Uzal N, Dou X, Zhang H, Wei X, Chen Y (2015) Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review. J Membr Sci 486:71–88. https://doi.org/10.1016/j.memsci.2015.02.039
Geis GM, Hickner MA, Logan BE (2013) Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl Mater Interfaces 5:10294–10301. https://doi.org/10.1021/am403207w
Cui Y, Chen X, Wang Y, Peong J, Zhao L, Du J, Zhai M (2019) Amphoteric ion exchange membranes prepared by preirradiation-induced emulsion graft copolymerization for vanadium redox flow battery. Polymers 11:1482. https://doi.org/10.3390/polym11091482
P.E. Dlugolecki, (2009) Mass transport in reverse electrodialysis for sustainable energy generation. University of Twente. 978-90-365-2928-0. https://doi.org/10.3990/1.9789036529280.
Choi I, Han JY, Yoo SJ, Henkensmeier D, Kim JY, Lee SY, Han J, Nam SW, Kim JJ, Jang JH (2016) Experimental investigation of operating parameters in power generation by lab-scale reverse electro-dialysis (RED). Bull Korean Chem Soc 37:1010–1019. https://doi.org/10.1002/bkcs.10810
Jeong J, Song H, Choi I (2021) Electrochemical analysis on how structural and compositional modification of electrode affects power generation in reverse electrodialysis. Korean J Chem Eng 38:170–178. https://doi.org/10.1007/s11814-020-0690-3
Zhao Z, Shi S, Cao H, Li Y, Bruggen BV (2019) Comparative studies on fouling of homogeneous anion exchange membranes by different structured organics in electrodialysis. J Environ Sci 77:218–228. https://doi.org/10.1016/j.jes.2018.07.018
H.J. Lee, S.H. Moon, (2000) A study on characterization of anion exchange membrnaes in electrodialysis of silica-containing solution. The Membrane Soc. of Korea (Fall Meeting) 79–82.
Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379. https://doi.org/10.1021/ie4002102
Guler E, Zhang Y, Saakes M, Nijmeijer K (2012) Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChe 5:2262–2270. https://doi.org/10.1002/cssc.201200298
Kumar M, Singh S, Shahi VK (2010) Cross-Linked Poly(vinyl alcohol)−Poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media. J Phys Chem B 114:198–206. https://doi.org/10.1021/jp9082079
Park JS, Choi JH, Woo JJ, Moon S (2006) An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J Colloid Interface Sci 300:655–662. https://doi.org/10.1016/j.jcis.2006.04.040
Fontannaova E, Zhang W, Nicotera I, Simari C, Baak W, Profio GD, Curcio E, Drioli E (2014) Probing membrane and interface properties in concentrated electrolyte solutions. J Membr Sci 459:177–189. https://doi.org/10.1016/j.memsci.2014.01.057
Shi X, Field R, Hankins N (2012) Review of fouling by mixed feeds in membrane filtration applied to water purification. Desalination Water Treat 35:68–81. https://doi.org/10.5004/dwt.2011.3131
Wang W, Fu R, Liu Z, Wang H (2017) Low-resistance anti-fouling ion exchange membranes fouled by organic foulants in electrodialysis. Desalination 417:1–8. https://doi.org/10.1016/j.desal.2017.05.013
Zhang L, Jia H, Wang J, Wen H, Li J (2020) Characterization of fouling and concentration polarization in ion exchange membrane by in-situ electrochemical impedance spectroscopy. J Membr Sci 594:117443. https://doi.org/10.1016/j.memsci.2019.117443
Yu CH, Fang LC, Lateef SK, Wu CH, Lin CF (2010) Enzymatic treatment for controlling irreversi ble membrane fouling in cross-flow humic acid-fed ultrafiltration. J Hazard Mater 177:1153–1158. https://doi.org/10.1016/j.jhazmat.2010.01.022
Katsoufidou K, Yiantsios SG, Karabelas AJ (2008) An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination 220:214–227. https://doi.org/10.1016/j.desal.2007.02.038
Jermann D, Pronk W, Meylan S, Boller M (2007) Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Res 41:1713–1722. https://doi.org/10.1016/j.watres.2006.12.030