Unveiling the Universe with emerging cosmological probes

M. Moresco1, L. Amati2, Luca Amendola3, Simon Birrer4, John P. Blakeslee5, Michele Cantiello6, A. Cimatti1, Jeremy Darling7, M. Della Valle8, M. Fishbach9, C. Grillo10, Nico Hamaus11, D. E. Holz12, L. Izzo13, Raúl Jiménez14, Elisabeta Lusso15, M. Meneghetti2, Ester Piedipalumbo16, Alice Pisani17, Alkistis Pourtsidou18, L. Pozzetti2, Miguel Quartin3, G. Risaliti19, P. Rosati2, Licia Verde14
1Dipartimento di Fisica e Astronomia “Augusto Righi”, Alma Mater Studiorum Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
2INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Piero Gobetti 93/3, 40129, Bologna, Italy
3Institute of Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120, Heidelberg, Germany
4Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA, 94305, USA
5NSF’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab), Tucson, AZ, 85719, USA
6INAF Osservatorio Astr. d’Abruzzo, via Maggini, 64100, Teramo, Italy
7Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO, 80309-0389, USA
8Capodimonte Astronomical Observatory, INAF-Napoli, Salita Moiariello 16, 80131, Napoli, Italy
9Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave, Evanston, IL, 60201, USA
10Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
11Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstraße 1, 81679, Munich, Germany
12Department of Physics, University of Chicago, Chicago, IL 60637, USA
13DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, 2100, Copenhagen, Denmark
14ICCUB, University of Barcelona, 08028, Barcelona, Spain
15INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
16Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Compl. Univ. Monte S. Angelo, 80126 Naples, Italy
17Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ, 08544, USA
18Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
19Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, 50019, Sesto Fiorentino, Florence, Italy

Tóm tắt

Abstract

The detection of the accelerated expansion of the Universe has been one of the major breakthroughs in modern cosmology. Several cosmological probes (Cosmic Microwave Background, Supernovae Type Ia, Baryon Acoustic Oscillations) have been studied in depth to better understand the nature of the mechanism driving this acceleration, and they are being currently pushed to their limits, obtaining remarkable constraints that allowed us to shape the standard cosmological model. In parallel to that, however, the percent precision achieved has recently revealed apparent tensions between measurements obtained from different methods. These are either indicating some unaccounted systematic effects, or are pointing toward new physics. Following the development of CMB, SNe, and BAO cosmology, it is critical to extend our selection of cosmological probes. Novel probes can be exploited to validate results, control or mitigate systematic effects, and, most importantly, to increase the accuracy and robustness of our results. This review is meant to provide a state-of-art benchmark of the latest advances in emerging “beyond-standard” cosmological probes. We present how several different methods can become a key resource for observational cosmology. In particular, we review cosmic chronometers, quasars, gamma-ray bursts, standard sirens, lensing time-delay with galaxies and clusters, cosmic voids, neutral hydrogen intensity mapping, surface brightness fluctuations, stellar ages of the oldest objects, secular redshift drift, and clustering of standard candles. The review describes the method, systematics, and results of each probe in a homogeneous way, giving the reader a clear picture of the available innovative methods that have been introduced in recent years and how to apply them. The review also discusses the potential synergies and complementarities between the various probes, exploring how they will contribute to the future of modern cosmology.

Từ khóa


Tài liệu tham khảo

Abbott BP et al (2017a) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678):85–88. https://doi.org/10.1038/nature24471. arXiv:1710.05835 [astro-ph.CO]

Abbott BP et al (2017b) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J 848(2):L13. https://doi.org/10.3847/2041-8213/aa920c

Abbott BP et al (2017c) GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119(14):141101. https://doi.org/10.1103/PhysRevLett.119.141101. arXiv:1709.09660 [gr-qc]

Abbott BP et al (2017d) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101. https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]

Abbott BP et al (2018) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 21:3. https://doi.org/10.1007/s41114-018-0012-9. arXiv:1304.0670 [gr-qc]

Abbott BP et al (2019a) Properties of the binary neutron star merger GW170817. Phys Rev X 9(1):011001. https://doi.org/10.1103/PhysRevX.9.011001. arXiv:1805.11579 [gr-qc]

Abbott BP et al (2019b) Tests of general relativity with GW170817. Phys Rev Lett 123(1):011102. https://doi.org/10.1103/PhysRevLett.123.011102. arXiv:1811.00364 [gr-qc]

Abbott R et al (2020) GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys J Lett 896(2):L44. https://doi.org/10.3847/2041-8213/ab960f. arXiv:2006.12611 [astro-ph.HE]

Abbott BP et al (2021a) A gravitational-wave measurement of the Hubble constant following the second observing run of advanced LIGO and Virgo. Astrophys J 909(2):218. https://doi.org/10.3847/1538-4357/abdcb7. arXiv:1908.06060 [astro-ph.CO]

Abbott R et al (2021b) Constraints on the cosmic expansion history from GWTC-3. arXiv e-prints arXiv:2111.03604 [astro-ph.CO]

Abbott R et al (2021c) Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog. Astrophys J Lett 913(1):L7. https://doi.org/10.3847/2041-8213/abe949. arXiv:2010.14533 [astro-ph.HE]

Abbott R et al (2021d) GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. arXiv e-prints arXiv:2111.03606 [gr-qc]

Abbott R et al (2021e) The population of merging compact binaries inferred using gravitational waves through GWTC-3. arXiv e-prints arXiv:2111.03634 [astro-ph.HE]

Abbott TMC et al (2022) Dark Energy Survey Year 3 results: cosmological constraints from galaxy clustering and weak lensing. Phys Rev D 105(2):023520. https://doi.org/10.1103/PhysRevD.105.023520. arXiv:2105.13549 [astro-ph.CO]

Abel NH (1842) Oeuvres completes. Sylow L, Lie S (eds). Johnson Reprint Corp, New York

Abramo LR (2012) The full Fisher matrix for galaxy surveys. Mon Not R Astron Soc 420(3):2042–2057. https://doi.org/10.1111/j.1365-2966.2011.20166.x. arXiv:1108.5449 [astro-ph.CO]

Abramo LR, Amendola L (2019) Fisher matrix for multiple tracers: model independent constraints on the redshift distortion parameter. JCAP 1906(06):030. https://doi.org/10.1088/1475-7516/2019/06/030. arXiv:1904.00673 [astro-ph.CO]

Abramo LR, Leonard KE (2013) Why multi-tracer surveys beat cosmic variance. Mon Not R Astron Soc 432:318. https://doi.org/10.1093/mnras/stt465. arXiv:1302.5444 [astro-ph.CO]

Acebron A, Jullo E, Limousin M, Tilquin A, Giocoli C, Jauzac M, Mahler G, Richard J (2017) Hubble Frontier Fields: systematic errors in strong lensing models of galaxy clusters—implications for cosmography. Mon Not R Astron Soc 470(2):1809–1825. https://doi.org/10.1093/mnras/stx1330. arXiv:1704.05380 [astro-ph.CO]

Acebron A, Grillo C, Bergamini P, Mercurio A, Rosati P, Bartosch Caminha G, Tozzi P, Brammer GB, Meneghetti M, Morelli A, Nonino M, Vanzella E (2021) VLT/MUSE observations of SDSS J1029+2623: towards a high-precision strong lensing model. arXiv e-prints arXiv:2111.05871

Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P, Balestri G, Ballardin G et al (2015) Advanced virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32(2):024001. https://doi.org/10.1088/0264-9381/32/2/024001. arXiv:1408.3978 [gr-qc]

Achitouv I (2016) Testing the imprint of nonstandard cosmologies on void profiles using Monte Carlo random walks. Phys Rev D 94(10):103524. https://doi.org/10.1103/PhysRevD.94.103524. arXiv:1609.01284 [astro-ph.CO]

Achitouv I (2019) New constraints on the linear growth rate using cosmic voids in the SDSS DR12 datasets. Phys Rev D 100(12):123513. https://doi.org/10.1103/PhysRevD.100.123513. arXiv:1903.05645 [astro-ph.CO]

Achitouv I, Blake C, Carter P, Koda J, Beutler F (2017) Consistency of the growth rate in different environments with the 6-degree Field Galaxy Survey: measurement of the void-galaxy and galaxy-galaxy correlation functions. Phys Rev D 95(8):083502. https://doi.org/10.1103/PhysRevD.95.083502. arXiv:1606.03092 [astro-ph.CO]

Agnello A, Kelly BC, Treu T, Marshall PJ (2015) Data mining for gravitationally lensed quasars. Mon Not R Astron Soc 448(2):1446–1462. https://doi.org/10.1093/mnras/stv037. arXiv:1410.4565 [astro-ph.GA]

Agnello A, Sonnenfeld A, Suyu SH, Treu T, Fassnacht CD, Mason C, Bradač M, Auger MW (2016) Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332. Mon Not R Astron Soc 458(4):3830–3838. https://doi.org/10.1093/mnras/stw529

Agnello A, Lin H, Kuropatkin N, Buckley-Geer E, Anguita T, Schechter PL, Morishita T, Motta V, Rojas K, Treu T, Amara A, Auger MW, Courbin F, Fassnacht CD, Frieman J, More A, Marshall PJ, McMahon RG, Meylan G, Suyu SH, Glazebrook K, Morgan N, Nord B, Abbott TMC, Abdalla FB, Annis J, Bechtol K, Benoit-Lévy A, Bertin E, Bernstein RA, Brooks D, Burke DL, Rosell AC, Carretero J, Cunha CE, D’Andrea CB, da Costa LN, Desai S, Drlica-Wagner A, Eifler TF, Flaugher B, García-Bellido J, Gaztanaga E, Gerdes DW, Gruen D, Gruendl RA, Gschwend J, Gutierrez G, Honscheid K, James DJ, Kuehn K, Lahav O, Lima M, Maia MAG, March M, Menanteau F, Miquel R, Ogando RLC, Plazas AA, Sanchez E, Scarpine V, Schindler R, Schubnell M, Sevilla-Noarbe I, Smith M, Soares-Santos M, Sobreira F, Suchyta E, Swanson MEC, Tarle G, Tucker D, Wechsler R (2018) DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. Mon Not R Astron Soc 479(4):4345–4354. https://doi.org/10.1093/mnras/sty1419. arXiv:1711.03971 [astro-ph.CO]

Ahmed Z, Alonso D, Amin MA, Ansari R, Arena EJ, Bandura K, Beardsley A, Bull P, Castorina E, Chang TC, Davé R, Dillon JS, van Engelen A, Ewall-Wice A, Ferraro S et al (2019) Research and development for HI intensity mapping. arXiv e-prints arXiv:1907.13090 [astro-ph.IM]

Ahumada R, Prieto CA, Almeida A, Anders F, Anderson SF, Andrews BH, Anguiano B, Arcodia R, Armengaud E, Aubert M, Avila S, Avila-Reese V, Badenes C, Balland C et al (2020) The 16th data release of the Sloan digital sky surveys: first release from the APOGEE-2 southern survey and full release of eBOSS spectra. Astrophys J Suppl 249(1):3. https://doi.org/10.3847/1538-4365/ab929e. arXiv:1912.02905 [astro-ph.GA]

Aiola S et al (2020) The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. JCAP 12:047. https://doi.org/10.1088/1475-7516/2020/12/047. arXiv:2007.07288 [astro-ph.CO]

Ajhar EA, Tonry JL, Blakeslee JP, Riess AG, Schmidt BP (2001) Reconciliation of the surface brightness fluctuation and type Ia supernova distance scales. Astrophys J 559(2):584–591. https://doi.org/10.1086/322342. arXiv:astro-ph/0105366 [astro-ph]

Akeret J, Seehars S, Chang C, Monstein C, Amara A, Refregier A (2017) HIDE & SEEK: end-to-end packages to simulate and process radio survey data. Astron Comput 18:8–17. https://doi.org/10.1016/j.ascom.2016.11.001

Akutsu T, Ando M, Arai K, Arai Y, Araki S, Araya A, Aritomi N, Aso Y, Bae SW, Bae YB et al (2020) Overview of KAGRA: Detector design and construction history. arXiv e-prints arXiv:2005.05574 [physics.ins-det]

Alam S, Ata M, Bailey S, Beutler F, Bizyaev D, Blazek JA, Bolton AS, Brownstein JR, Burden A, Chuang CH, Comparat J, Cuesta AJ, Dawson KS, Eisenstein DJ et al (2017) The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon Not R Astron Soc 470(3):2617–2652. https://doi.org/10.1093/mnras/stx721. arXiv:1607.03155 [astro-ph.CO]

Alam S, Arnold C, Aviles A, Bean R, Cai YC, Cautun M, Cervantes-Cota JL, Cuesta-Lazaro C, Devi NC, Eggemeier A, Fromenteau S, Gonzalez-Morales AX, Halenka V, He Jh, Hellwing WA, Hernández-Aguayo C, Ishak M, Koyama K, Li B, de la Macorra A, Meneses Rizo J, Miller C, Mueller EM, Niz G, Ntelis P, Rodríguez Otero M, Sabiu CG, Slepian Z, Stark A, Valenzuela O, Valogiannis G, Vargas-Magaña M, Winther HA, Zarrouk P, Zhao GB, Zheng Y (2021) Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements. JCAP 11:050. https://doi.org/10.1088/1475-7516/2021/11/050. arXiv:2011.05771 [astro-ph.CO]

Alam S et al (2021) Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys Rev D 103(8):083533. https://doi.org/10.1103/PhysRevD.103.083533. arXiv:2007.08991 [astro-ph.CO]

Albrecht A, Bernstein G, Cahn R, Freedman WL, Hewitt J, Hu W, Huth J, Kamionkowski M, Kolb EW, Knox L, Mather JC, Staggs S, Suntzeff NB (2006) Report of the dark energy task force. arXiv e-prints arXiv:astro-ph/0609591 [astro-ph]

Alcock C, Paczynski B (1979a) An evolution free test for non-zero cosmological constant. Nature 281:358. https://doi.org/10.1038/281358a0

Alcock C, Paczynski B (1979b) An evolution free test for non-zero cosmological constant. Nature 281:358–359. https://doi.org/10.1038/281358a0

Alfradique V, Quartin M, Amendola L, Castro T, Toubiana A (2022) The lure of sirens: joint distance and velocity measurements with third generation detectors. arXiv e-prints arXiv:2205.14034 [astro-ph.CO]

Aljaf M, Gregoris D, Khurshudyan M (2021) Constraints on interacting dark energy models through cosmic chronometers and Gaussian process. Eur Phys J C 81(6):544. https://doi.org/10.1140/epjc/s10052-021-09306-2. arXiv:2005.01891 [astro-ph.CO]

Allen SW, Evrard AE, Mantz AB (2011) Cosmological Parameters from Observations of Galaxy Clusters. Annu Rev Astron Astrophys 49(1):409–470. https://doi.org/10.1146/annurev-astro-081710-102514. arXiv:1103.4829 [astro-ph.CO]

Alonso D, Ferreira PG (2015) Constraining ultralarge-scale cosmology with multiple tracers in optical and radio surveys. Phys Rev D 92(6):063525. https://doi.org/10.1103/PhysRevD.92.063525. arXiv:1507.03550 [astro-ph.CO]

Alonso D, Ferreira PG, Santos MG (2014) Fast simulations for intensity mapping experiments. Mon Not R Astron Soc 444(4):3183–3197. https://doi.org/10.1093/mnras/stu1666. arXiv:1405.1751 [astro-ph.CO]

Alonso D, Bull P, Ferreira PG, Maartens R, Santos M (2015a) Ultra large-scale cosmology in next-generation experiments with single tracers. Astrophys J 814(2):145. https://doi.org/10.1088/0004-637X/814/2/145. arXiv:1505.07596 [astro-ph.CO]

Alonso D, Bull P, Ferreira PG, Santos MG (2015b) Blind foreground subtraction for intensity mapping experiments. Mon Not R Astron Soc 447:400. https://doi.org/10.1093/mnras/stu2474. arXiv:1409.8667 [astro-ph.CO]

Alonso D, Hill JC, Hložek R, Spergel DN (2018) Measurement of the thermal Sunyaev-Zel’dovich effect around cosmic voids. Phys Rev D 97(6):063514. https://doi.org/10.1103/PhysRevD.97.063514. arXiv:1709.01489 [astro-ph.CO]

Alves CS, Leite ACO, Martins CJAP, Matos JGB, Silva TA (2019) Forecasts of redshift drift constraints on cosmological parameters. Mon Not R Astron Soc 488(3):3607–3624. https://doi.org/10.1093/mnras/stz1934. arXiv:1907.05151 [astro-ph.CO]

Amati L (2006) The E$$_{p, i}$$-E$$_{iso}$$ correlation in gamma-ray bursts: updated observational status, re-analysis and main implications. Mon Not R Astron Soc 372(1):233–245. https://doi.org/10.1111/j.1365-2966.2006.10840.x. arXiv:astro-ph/0601553 [astro-ph]

Amati L, Della Valle M (2013) Measuring Cosmological Parameters with Gamma Ray Bursts. Int J Mod Phys D 22(14):1330028. https://doi.org/10.1142/S0218271813300280. arXiv:1310.3141 [astro-ph.CO]

Amati L, Frontera F, Tavani M, in’t Zand JJM, Antonelli A, Costa E, Feroci M, Guidorzi C, Heise J, Masetti N, Montanari E, Nicastro L, Palazzi E, Pian E, Piro L, Soffitta P (2002) Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron Astrophys 390:81–89. https://doi.org/10.1051/0004-6361:20020722. arXiv:astro-ph/0205230 [astro-ph]

Amati L, Guidorzi C, Frontera F, Della Valle M, Finelli F, Landi R, Montanari E (2008) Measuring the cosmological parameters with the E$$_{p, i}$$-E$$_{iso}$$ correlation of gamma-ray bursts. Mon Not R Astron Soc 391(2):577–584. https://doi.org/10.1111/j.1365-2966.2008.13943.x. arXiv:0805.0377 [astro-ph]

Amati L, Frontera F, Guidorzi C (2009) Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations. Astron Astrophys 508(1):173–180. https://doi.org/10.1051/0004-6361/200912788. arXiv:0907.0384 [astro-ph.HE]

Amati L, O’Brien P, Götz D, Bozzo E, Tenzer C, Frontera F, Ghirlanda G, Labanti C et al (2018) The THESEUS space mission concept: science case, design and expected performances. Adv Space Res 62(1):191–244. https://doi.org/10.1016/j.asr.2018.03.010. arXiv:1710.04638 [astro-ph.IM]

Amati L, D’Agostino R, Luongo O, Muccino M, Tantalo M (2019) Addressing the circularity problem in the E$$_{p}$$-E$$_{iso}$$ correlation of gamma-ray bursts. Mon Not R Astron Soc 486(1):L46–L51. https://doi.org/10.1093/mnrasl/slz056. arXiv:1811.08934 [astro-ph.HE]

Amendola L, Quartin M (2021) Measuring the Hubble function with standard candle clustering. Mon Not R Astron Soc 504(3):3884–3889. https://doi.org/10.1093/mnras/stab887. arXiv:1912.10255 [astro-ph.CO]

Amendola L, Quercellini C, Giallongo E (2005) Constraints on perfect fluid and scalar field dark energy models from future redshift surveys. Mon Not R Astron Soc 357:429–439. https://doi.org/10.1111/j.1365-2966.2004.08558.x. arXiv:astro-ph/0404599 [astro-ph]

Amendola L, Kunz M, Saltas ID, Sawicki I (2018) The fate of large-scale structure in modified gravity after GW170817 and GRB170817A. Phys Rev Lett 120(13):131101. https://doi.org/10.1103/PhysRevLett.120.131101. arXiv:1711.04825 [astro-ph.CO]

Amendola L, Pietroni M, Quartin M (2022) Fisher matrix for the one-loop galaxy power spectrum: measuring expansion and growth rates without assuming a cosmological model. arXiv e-prints arXiv:2205.00569 [astro-ph.CO]

Amon A et al (2022) Dark Energy Survey Year 3 results: cosmology from cosmic shear and robustness to data calibration. Phys Rev D 105(2):023514. https://doi.org/10.1103/PhysRevD.105.023514. arXiv:2105.13543 [astro-ph.CO]

Anderson C et al (2018) Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities. Mon Not R Astron Soc 476(3):3382–3392. https://doi.org/10.1093/mnras/sty346. arXiv:1710.00424 [astro-ph.CO]

Angora G, Rosati P, Brescia M, Mercurio A, Grillo C, Caminha G, Meneghetti M, Nonino M, Vanzella E, Bergamini P, Biviano A, Lombardi M (2020) The search for galaxy cluster members with deep learning of panchromatic HST imaging and extensive spectroscopy. Astron Astrophys 643:A177. https://doi.org/10.1051/0004-6361/202039083. arXiv:2009.08224 [astro-ph.GA]

Annunziatella M, Bonamigo M, Grillo C, Mercurio A, Rosati P, Caminha G, Biviano A, Girardi M, Gobat R, Lombardi M, Munari E (2017) Mass Profile Decomposition of the Frontier Fields Cluster MACS J0416–2403: insights on the Dark-matter Inner Profile. Astrophys J 851(2):81. https://doi.org/10.3847/1538-4357/aa9845. arXiv:1711.02109 [astro-ph.CO]

Ansari R, Campagne JE, Colom P, Goff JML, Magneville C, Martin JM, Moniez M, Rich J, Yeche C (2012) 21 cm observation of LSS at $$z \sim 1$$ Instrument sensitivity and foreground subtraction. Astron Astrophys 540:A129. https://doi.org/10.1051/0004-6361/201117837. arXiv:1108.1474 [astro-ph.CO]

Arjona R, Nesseris S (2021) Novel null tests for the spatial curvature and homogeneity of the Universe and their machine learning reconstructions. Phys Rev D 103(10):103539. https://doi.org/10.1103/PhysRevD.103.103539. arXiv:2103.06789 [astro-ph.CO]

Arnouts S, Le Floc’h E, Chevallard J, Johnson BD, Ilbert O, Treyer M, Aussel H, Capak P, Sanders DB, Scoville N, McCracken HJ, Milliard B, Pozzetti L, Salvato M (2013) Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies. Astron Astrophys 558:A67. https://doi.org/10.1051/0004-6361/201321768. arXiv:1309.0008 [astro-ph.CO]

Asgari M, Tröster T, Heymans C, Hildebrandt H, van den Busch JL, Wright AH, Choi A, Erben T, Joachimi B, Joudaki S, Kannawadi A, Kuijken K, Lin CA, Schneider P, Zuntz J (2020) KiDS+VIKING-450 and DES-Y1 combined: mitigating baryon feedback uncertainty with COSEBIs. Astron Astrophys 634:A127. https://doi.org/10.1051/0004-6361/201936512. arXiv:1910.05336 [astro-ph.CO]

Asgari M, Lin CA, Joachimi B, Giblin B, Heymans C, Hildebrandt H, Kannawadi A, Stölzner B, Tröster T, van den Busch JL, Wright AH, Bilicki M, Blake C, de Jong J, Dvornik A, Erben T, Getman F, Hoekstra H, Köhlinger F, Kuijken K, Miller L, Radovich M, Schneider P, Shan H, Valentijn E (2021) KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. Astron Astrophys 645:A104. https://doi.org/10.1051/0004-6361/202039070. arXiv:2007.15633 [astro-ph.CO]

Ashton G, Ackley K, Hernandez IM, Piotrzkowski B (2021) Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929. Class Quantum Grav 38(23):235004. https://doi.org/10.1088/1361-6382/ac33bb. arXiv:2009.12346 [astro-ph.HE]

Astier P, Guy J, Regnault N, Pain R, Aubourg E, Balam D, Basa S, Carlberg RG, Fabbro S, Fouchez D, Hook IM, Howell DA, Lafoux H, Neill JD, Palanque-Delabrouille N, Perrett K et al (2006) The Supernova Legacy Survey: measurement of $$\Omega $$$$_{M}$$, $$\Omega $$$$_{{\Lambda }}$$ and w from the first year data set. Astron Astrophys 447(1):31–48. https://doi.org/10.1051/0004-6361:20054185. arXiv:astro-ph/0510447 [astro-ph]

Aubert M, Cousinou MC, Escoffier S, Hawken AJ, Nadathur S, Alam S, Bautista J, Burtin E, Chuang CH, de la Macorra A, de Mattia A, Gil-Marín H, Hou J, Jullo E, Kneib JP, Neveux R, Rossi G, Schneider D, Smith A, Tamone A, Vargas Magaña M, Zhao C (2022) The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: growth rate of structure measurement from cosmic voids. Mon Not R Astron Soc 513(1):186–203. https://doi.org/10.1093/mnras/stac828. arXiv:2007.09013 [astro-ph.CO]

Auger MW, Treu T, Bolton AS, Gavazzi R, Koopmans LVE, Marshall PJ, Bundy K, Moustakas LA (2009) The sloan lens ACS survey. IX. Colors, lensing, and stellar masses of early-type galaxies. Astrophys J 705(2):1099–1115. https://doi.org/10.1088/0004-637X/705/2/1099. arXiv:0911.2471 [astro-ph.CO]

Avila S, Vos-Ginés B, Cunnington S, Stevens ARH, Yepes G, Knebe A, Chuang CH (2022) H I IM correlation function from UNIT simulations: BAO and observationally induced anisotropy. Mon Not R Astron Soc 510(1):292–308. https://doi.org/10.1093/mnras/stab3406. arXiv:2105.10454 [astro-ph.CO]

Avni Y, Tananbaum H (1982) On the cosmological evolution of the X-ray emission from quasars. Astrophys J Lett 262:L17–L21. https://doi.org/10.1086/183903

Ayuso I, Lazkoz R, Salzano V (2021) Observational constraints on cosmological solutions of f (Q ) theories. Phys Rev D 103(6):063505. https://doi.org/10.1103/PhysRevD.103.063505. arXiv:2012.00046 [astro-ph.CO]

Azzam WJ (2012) Dependence of the GRB Lag-Luminosity Relation on Redshift in the Source Frame. Int J Astron Astrophys 2(1):1–5. https://doi.org/10.4236/ijaa.2012.21001. arXiv:1203.6530 [astro-ph.HE]

Bailoni A, Spurio Mancini A, Amendola L (2017) Improving Fisher matrix forecasts for galaxy surveys: window function, bin cross-correlation and bin redshift uncertainty. Mon Not R Astron Soc 470(1):688–705. https://doi.org/10.1093/mnras/stx1209. arXiv:1608.00458 [astro-ph.CO]

Baker T, Clampitt J, Jain B, Trodden M (2018) Void lensing as a test of gravity. Phys Rev D 98(2):023511. https://doi.org/10.1103/PhysRevD.98.023511. arXiv:1803.07533 [astro-ph.CO]

Baker T et al (2017) Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys Rev Lett 119(25):251301. https://doi.org/10.1103/PhysRevLett.119.251301

Baldauf T, Seljak U, Smith RE, Hamaus N, Desjacques V (2013) Halo stochasticity from exclusion and nonlinear clustering. Phys Rev D 88(8):083507. https://doi.org/10.1103/PhysRevD.88.083507. arXiv:1305.2917 [astro-ph.CO]

Baldi M, Villaescusa-Navarro F (2018) Cosmic degeneracies—II. Structure formation in joint simulations of warm dark matter and f(R) gravity. Mon Not R Astron Soc 473:3226–3240. https://doi.org/10.1093/mnras/stx2594

Baldry IK, Glazebrook K, Brinkmann J, Ivezić Ž, Lupton RH, Nichol RC, Szalay AS (2004) Quantifying the Bimodal Color-Magnitude Distribution of Galaxies. Astrophys J 600(2):681–694. https://doi.org/10.1086/380092. arXiv:astro-ph/0309710 [astro-ph]

Baldry IK, Balogh ML, Bower RG, Glazebrook K, Nichol RC, Bamford SP, Budavari T (2006) Galaxy bimodality versus stellar mass and environment. Mon Not R Astron Soc 373(2):469–483. https://doi.org/10.1111/j.1365-2966.2006.11081.x. arXiv:astro-ph/0607648 [astro-ph]

Baldry IK, Glazebrook K, Driver SP (2008) On the galaxy stellar mass function, the mass-metallicity relation and the implied baryonic mass function. Mon Not R Astron Soc 388(3):945–959. https://doi.org/10.1111/j.1365-2966.2008.13348.x. arXiv:0804.2892 [astro-ph]

Balestra I, Mercurio A, Sartoris B, Girardi M, Grillo C, Nonino M, Rosati P, Biviano A, Ettori S, Forman W, Jones C, Koekemoer A, Medezinski E, Merten J et al (2016) CLASH-VLT: dissecting the frontier fields galaxy cluster MACS J0416.1–2403 with $$\sim $$800 Spectra of Member Galaxies. Astrophys J Suppl 224(2):33. https://doi.org/10.3847/0067-0049/224/2/33. arXiv:1511.02522 [astro-ph.CO]

Ballinger WE, Peacock JA, Heavens AF (1996) Measuring the cosmological constant with redshift surveys. Mon Not R Astron Soc 282:877. https://doi.org/10.1093/mnras/282.3.877. arXiv:astro-ph/9605017 [astro-ph]

Balogh ML, Morris SL, Yee HKC, Carlberg RG, Ellingson E (1999) Differential galaxy evolution in cluster and field galaxies at $${{\rm z}}\sim 0.3$$. Astrophys J 527:54–79. https://doi.org/10.1086/308056. arXiv:astro-ph/9906470

Band D, Matteson J, Ford L, Schaefer B, Palmer D, Teegarden B, Cline T, Briggs M, Paciesas W, Pendleton G, Fishman G, Kouveliotou C, Meegan C, Wilson R, Lestrade P (1993) BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys J 413:281. https://doi.org/10.1086/172995

Band DL, Preece RD (2005) Testing the gamma-ray burst energy relationships. Astrophys J 627(1):319–323. https://doi.org/10.1086/430402

Bandura K et al (2014) Canadian hydrogen intensity mapping experiment (CHIME) pathfinder. Proc SPIE Int Soc Opt Eng 9145:22. https://doi.org/10.1117/12.2054950. arXiv:1406.2288 [astro-ph.IM]

Banerjee A, Dalal N (2016) Simulating nonlinear cosmological structure formation with massive neutrinos. JCAP 11:015. https://doi.org/10.1088/1475-7516/2016/11/015. arXiv:1606.06167

Bargiacchi G, Benetti M, Capozziello S, Lusso E, Risaliti G, Signorini M (2021a) Quasar cosmology: dark energy evolution and spatial curvature. arXiv e-prints arXiv:2111.02420 [astro-ph.CO]

Bargiacchi G, Risaliti G, Benetti M, Capozziello S, Lusso E, Saccardi A, Signorini M (2021b) Cosmography by orthogonalized logarithmic polynomials. arXiv e-prints arXiv:2101.08278 [astro-ph.CO]

Barreira A (2022) The local PNG bias of neutral Hydrogen, H$$_{I}$$. JCAP 2022(4):057. https://doi.org/10.1088/1475-7516/2022/04/057. arXiv:2112.03253 [astro-ph.CO]

Barreira A, Cautun M, Li B, Baugh CM, Pascoli S (2015) Weak lensing by voids in modified lensing potentials. JCAP 8:028. https://doi.org/10.1088/1475-7516/2015/08/028. arXiv:1505.05809 [astro-ph.CO]

Bartelmann M, Schneider P (2001) Weak gravitational lensing. Phys Rep 340(4–5):291–472. https://doi.org/10.1016/S0370-1573(00)00082-X. arXiv:astro-ph/9912508 [astro-ph]

Basak R, Rao AR (2013) Pulse-wise Amati correlation in Fermi gamma-ray bursts. Mon Not R Astron Soc 436(4):3082–3088. https://doi.org/10.1093/mnras/stt1790. arXiv:1309.5233 [astro-ph.HE]

Basilakos S, Nesseris S (2017) Conjoined constraints on modified gravity from the expansion history and cosmic growth. Phys Rev D 96(6):063517. https://doi.org/10.1103/PhysRevD.96.063517. arXiv:1705.08797 [astro-ph.CO]

Battye RA, Davies RD, Weller J (2004) Neutral hydrogen surveys for high redshift galaxy clusters and proto-clusters. Mon Not R Astron Soc 355:1339–1347. https://doi.org/10.1111/j.1365-2966.2004.08416.x. arXiv:astro-ph/0401340

Battye RA, Browne IWA, Dickinson C, Heron G, Maffei B, Pourtsidou A (2013) HI intensity mapping: a single dish approach. Mon Not R Astron Soc 434:1239–1256. https://doi.org/10.1093/mnras/stt1082. arXiv:1209.0343 [astro-ph.CO]

Bautista JE, Paviot R, Vargas Magaña M, de la Torre S, Fromenteau S, Gil-Marín H, Ross AJ, Burtin E, Dawson KS, Hou J, Kneib JP, de Mattia A, Percival WJ, Rossi G, Tojeiro R, Zhao C, Zhao GB, Alam S, Brownstein J, Chapman MJ, Choi PD, Chuang CH, Escoffier S, de la Macorra A, du Mas des Bourboux H, Mohammad FG, Moon J, Müller EM, Nadathur S, Newman JA, Schneider D, Seo HJ, Wang Y (2021) The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic correlation function between redshifts 0.6 and 1. Mon Not R Astron Soc 500(1):736–762. https://doi.org/10.1093/mnras/staa2800. arXiv:2007.08993 [astro-ph.CO]

Bayer AE, Villaescusa-Navarro F, Massara E, Liu J, Spergel DN, Verde L, Wandelt BD, Viel M, Ho S (2021) Detecting neutrino mass by combining matter clustering, halos, and voids. Astrophys J 919(1):24. https://doi.org/10.3847/1538-4357/ac0e91. arXiv:2102.05049 [astro-ph.CO]

Becker RH, White RL, Helfand DJ (1995) The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophys J 450:559. https://doi.org/10.1086/176166

Beisbart C, Kerscher M (2000) Luminosity- and morphology-dependent clustering of galaxies. Astrophys J 545(1):6–25. https://doi.org/10.1086/317788. arXiv:astro-ph/0003358 [astro-ph]

Belli S, Genzel R, Förster Schreiber NM, Wisnioski E, Wilman DJ, Wuyts S, Mendel JT, Beifiori A, Bender R, Brammer GB, Burkert A, Chan J, Davies RL, Davies R, Fabricius M, Fossati M, Galametz A, Lang P, Lutz D, Momcheva IG, Nelson EJ, Saglia RP, Tacconi LJ, Ki Tadaki, Übler H, van Dokkum P (2017) KMOS$$^{3D}$$ reveals low-level star formation activity in massive quiescent galaxies at $$0.7 < z < 2.7$$. Astrophys J Lett 841(1):L6. https://doi.org/10.3847/2041-8213/aa70e5. arXiv:1703.07778 [astro-ph.GA]

Belli S, Newman AB, Ellis RS (2019) MOSFIRE spectroscopy of quiescent galaxies at $$1.5 < z < 2.5$$. II. Star formation histories and galaxy quenching. Astrophys J 874(1):17. https://doi.org/10.3847/1538-4357/ab07af. arXiv:1810.00008 [astro-ph.GA]

Benetti M, Capozziello S (2019) Connecting early and late epochs by f(z)CDM cosmography. JCAP 12:008. https://doi.org/10.1088/1475-7516/2019/12/008. arXiv:1910.09975 [astro-ph.CO]

Benetti M, Lobato Graef L, Vagnozzi S (2021) Primordial gravitational waves from NANOGrav: a broken power-law approach. arXiv e-prints arXiv:2111.04758 [astro-ph.CO]

Bennett CL, Halpern M, Hinshaw G, Jarosik N, Kogut A, Limon M, Meyer SS, Page L, Spergel DN, Tucker GS, Wollack E, Wright EL, Barnes C, Greason MR, Hill RS, Komatsu E, Nolta MR, Odegard N, Peiris HV, Verde L, Weiland JL (2003) First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys J Suppl 148(1):1–27. https://doi.org/10.1086/377253. arXiv:astro-ph/0302207 [astro-ph]

Bera S, Rana D, More S, Bose S (2020) Incompleteness matters not: inference of H$$_{0}$$ from binary black hole-galaxy cross-correlations. Astrophys J 902(1):79. https://doi.org/10.3847/1538-4357/abb4e0. arXiv:2007.04271 [astro-ph.CO]

Bergamini P, Agnello A, Caminha GB (2021) Cluster strong lensing with hierarchical inference. Formalism, functional tests, and public code release. Astron Astrophys 648:A123. https://doi.org/10.1051/0004-6361/201937138. arXiv:2008.11728 [astro-ph.CO]

Bergamini P, Rosati P, Vanzella E, Caminha GB, Grillo C, Mercurio A, Meneghetti M, Angora G, Calura F, Nonino M, Tozzi P (2021) A new high-precision strong lensing model of the galaxy cluster MACS J0416.1–2403. Robust characterization of the cluster mass distribution from VLT/MUSE deep observations. Astron Astrophys 645:A140. https://doi.org/10.1051/0004-6361/202039564. arXiv:2010.00027 [astro-ph.GA]

Bernal JL, Verde L, Riess AG (2016) The trouble with H$$_{0}$$. JCAP 10:019. https://doi.org/10.1088/1475-7516/2016/10/019. arXiv:1607.05617 [astro-ph.CO]

Bernal JL, Breysse PC, Gil-Marín H, Kovetz ED (2019) User’s guide to extracting cosmological information from line-intensity maps. Phys Rev D 100(12):123522. https://doi.org/10.1103/PhysRevD.100.123522. arXiv:1907.10067 [astro-ph.CO]

Bernal JL, Verde L, Jimenez R, Kamionkowski M, Valcin D, Wandelt BD (2021) Trouble beyond H$$_{0}$$ and the new cosmic triangles. Phys Rev D 103(10):103533. https://doi.org/10.1103/PhysRevD.103.103533. arXiv:2102.05066 [astro-ph.CO]

Bernardini MG, Margutti R, Zaninoni E, Chincarini G (2012) A universal scaling for short and long gamma-ray bursts: E$$_{X, iso}$$ - E$$_{{\gamma }, iso}$$ - E$$_{pk}$$. Mon Not R Astron Soc 425(2):1199–1204. https://doi.org/10.1111/j.1365-2966.2012.21487.x. arXiv:1203.1060 [astro-ph.HE]

Bertrand Cordier, Jianyan Wei, Collaboration SVOM (2019) The SVOM mission. Mem Soc Astron Ital 90:242

Bertschinger E (1985) The self-similar evolution of holes in an Einstein-de Sitter universe. Astrophys J Suppl 58:1–37. https://doi.org/10.1086/191027

Bessa P, Campista M, Bernui A (2021) Observational constraints on Starobinsky $$f(R)$$ cosmology from cosmic expansion and structure growth data. arXiv e-prints arXiv:2112.00822 [astro-ph.CO]

Betoule M et al (2014) Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron Astrophys 568:A22. https://doi.org/10.1051/0004-6361/201423413. arXiv:1401.4064 [astro-ph.CO]

Beutler F, Cand Blake M, Colless et al (2012) The 6dF Galaxy Survey: $$z=0$$ measurements of the growth rate and $$\sigma $$8. Mon Not R Astron Soc 423(4):3430–3444. https://doi.org/10.1111/j.1365-2966.2012.21136.x

Bigot-Sazy MA, Dickinson C, Battye RA, Browne IWA, Ma YZ, Maffei B, Noviello F, Remazeilles M, Wilkinson PN (2015) Simulations for single-dish intensity mapping experiments. Mon Not R Astron Soc 454(3):3240–3253. https://doi.org/10.1093/mnras/stv2153. arXiv:1507.04561 [astro-ph.CO]

Bilicki M, Seikel M (2012) We do not live in the R$$_{h}$$ = ct universe. Mon Not R Astron Soc 425(3):1664–1668. https://doi.org/10.1111/j.1365-2966.2012.21575.x. arXiv:1206.5130 [astro-ph.CO]

Binney J, Mamon GA (1982) M/L and velocity anisotropy from observations of spherical galaxies, of must M 87 have a massive black hole? Mon Not R Astron Soc 200:361–375. https://doi.org/10.1093/mnras/200.2.361

Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press, Princeton

Birrer S (2021) Gravitational lensing formalism in a curved arc basis: a continuous description of observables and degeneracies from the weak to the strong lensing regime. arXiv e-prints arXiv:2104.09522

Birrer S, Amara A (2018) lenstronomy: Multi-purpose gravitational lens modelling software package. Phys Dark Univ 22:189–201. https://doi.org/10.1016/j.dark.2018.11.002. arXiv:1803.09746 [astro-ph.CO]

Birrer S, Treu T (2021) TDCOSMO. V. Strategies for precise and accurate measurements of the Hubble constant with strong lensing. Astron Astrophys 649:A61. https://doi.org/10.1051/0004-6361/202039179. arXiv:2008.06157 [astro-ph.CO]

Birrer S, Amara A, Refregier A (2015) Gravitational lens modeling with basis sets. Astrophys J 813(2):102. https://doi.org/10.1088/0004-637X/813/2/102. arXiv:1504.07629 [astro-ph.CO]

Birrer S, Amara A, Refregier A (2016) The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231. JCAP 8:020. https://doi.org/10.1088/1475-7516/2016/08/020. arXiv:1511.03662 [astro-ph.CO]

Birrer S, Welschen C, Amara A, Refregier A (2017) Line-of-sight effects in strong lensing: putting theory into practice. JCAP 4:049. https://doi.org/10.1088/1475-7516/2017/04/049. arXiv:1610.01599 [astro-ph.CO]

Birrer S, Treu T, Rusu CE, Bonvin V, Fassnacht CD, Chan JHH, Agnello A, Shajib AJ, Chen GCF, Auger M, Courbin F, Hilbert S, Sluse D, Suyu SH, Wong KC, Marshall P, Lemaux BC, Meylan G (2019) H0LiCOW—IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. Mon Not R Astron Soc 484(4):4726–4753. https://doi.org/10.1093/mnras/stz200. arXiv:1809.01274 [astro-ph.CO]

Birrer S, Shajib AJ, Galan A, Millon M, Treu T, Agnello A, Auger M, Chen GCF, Christensen L, Collett T, Courbin F, Fassnacht CD, Koopmans LVE, Marshall PJ, Park JW, Rusu CE, Sluse D, Spiniello C, Suyu SH, Wagner-Carena S, Wong KC, Barnabè M, Bolton AS, Czoske O, Ding X, Frieman JA, Van de Vyvere L (2020) TDCOSMO. IV. Hierarchical time-delay cosmography—joint inference of the Hubble constant and galaxy density profiles. Astron Astrophys 643:A165. https://doi.org/10.1051/0004-6361/202038861. arXiv:2007.02941 [astro-ph.CO]

Birrer S, Dhawan S, Shajib AJ (2021) The Hubble constant from strongly lensed supernovae with standardizable magnifications. arXiv e-prints arXiv:2107.12385

Biscardi I, Raimondo G, Cantiello M, Brocato E (2008) Optical surface brightness fluctuations of shell galaxies toward 100 Mpc. Astrophys J 678(1):168–178. https://doi.org/10.1086/587126. arXiv:0802.2509 [astro-ph]

Bisogni S, Risaliti G, Lusso E (2017) A hubble diagram for quasars. Front Astron Space Sci 4:68. https://doi.org/10.3389/fspas.2017.00068. arXiv:1712.07515 [astro-ph.GA]

Bisogni S, Lusso E, Civano F, Nardini E, Risaliti G, Elvis M, Fabbiano G (2021) The Chandra view of the relation between X-ray and UV emission in quasars. Astron Astrophys 655:A109. https://doi.org/10.1051/0004-6361/202140852. arXiv:2109.03252 [astro-ph.GA]

Biswas R, Alizadeh E, Wandelt BD (2010) Voids as a precision probe of dark energy. Phys Rev D 82(2):023002. https://doi.org/10.1103/PhysRevD.82.023002. arXiv:1002.0014 [astro-ph.CO]

Blake C (2019) Power spectrum modelling of galaxy and radio intensity maps including observational effects. Mon Not R Astron Soc 489(1):153–167. https://doi.org/10.1093/mnras/stz2145. arXiv:1902.07439 [astro-ph.CO]

Blakeslee JP, Cantiello M (2018) Independent analysis of the distance to NGC 1052-DF2. Res Notes Am Astron Soc 2(3):146. https://doi.org/10.3847/2515-5172/aad90e. arXiv:1808.02176 [astro-ph.GA]

Blakeslee JP, Tonry JL (1995) Measurements of globular cluster specific frequencies and luminosity function widths in coma. Astrophys J 442:579. https://doi.org/10.1086/175461

Blakeslee JP, Ajhar EA, Tonry JL (1999a) Distances from surface brightness fluctuations. In: Heck A, Caputo F (eds) Post-hipparcos cosmic candles. Astrophysics and space science library, vol 237. Springer, Dordrecht, p 181. https://doi.org/10.1007/978-94-011-4734-7_11. arXiv:astro-ph/9807124 [astro-ph]

Blakeslee JP, Davis M, Tonry JL, Dressler A, Ajhar EA (1999) A first comparison of the surface brightness fluctuation survey distances with the galaxy density field: implications for H$$_{0}$$ and $$\Omega $$. Astrophys J Lett 527(2):L73–L76. https://doi.org/10.1086/312404. arXiv:astro-ph/9910340 [astro-ph]

Blakeslee JP, Lucey JR, Barris BJ, Hudson MJ, Tonry JL (2001a) A synthesis of data from fundamental plane and surface brightness fluctuation surveys. Mon Not R Astron Soc 327(3):1004–1020. https://doi.org/10.1046/j.1365-8711.2001.04800.x. arXiv:astro-ph/0108194 [astro-ph]

Blakeslee JP, Vazdekis A, Ajhar EA (2001b) Stellar populations and surface brightness fluctuations: new observations and models. Mon Not R Astron Soc 320:193

Blakeslee JP, Lucey JR, Tonry JL, Hudson MJ, Narayanan VK, Barris BJ (2002) Early-type galaxy distances from the Fundamental Plane and surface brightness fluctuations. Mon Not R Astron Soc 330(2):443–457. https://doi.org/10.1046/j.1365-8711.2002.05080.x. arXiv:astro-ph/0111183 [astro-ph]

Blakeslee JP, Jordán A, Mei S, Côté P, Ferrarese L, Infante L, Peng EW, Tonry JL, West MJ (2009) The ACS Fornax Cluster Survey. V. Measurement and recalibration of surface brightness fluctuations and a precise value of the Fornax-Virgo relative distance. Astrophys J 694:556–572. https://doi.org/10.1088/0004-637X/694/1/556. arXiv:0901.1138

Blakeslee JP, Cantiello M, Mei S, Côté P, Barber DeGraaff R, Ferrarese L, Jordán A, Peng EW, Tonry JL, Worthey G (2010) Surface brightness fluctuations in the hubble space telescope ACS/WFC F814W bandpass and an update on galaxy distances. Astrophys J 724(1):657–668. https://doi.org/10.1088/0004-637X/724/1/657. arXiv:1009.3270 [astro-ph.CO]

Blakeslee JP, Jensen JB, Ma CP, Milne PA, Greene JE (2021) The hubble constant from infrared surface brightness fluctuation distances. Astrophys J 911(1):65. https://doi.org/10.3847/1538-4357/abe86a

Blanchard A et al (2020) Euclid preparation: VII. Forecast validation for Euclid cosmological probes. Astron Astrophys 642:A191. https://doi.org/10.1051/0004-6361/202038071. arXiv:1910.09273 [astro-ph.CO]

Blandford R, Narayan R (1986) Fermat’s principle, caustics, and the classification of gravitational lens images. Astrophys J 310:568. https://doi.org/10.1086/164709

Blum K, Castorina E, Simonović M (2020) Could quasar lensing time delays hint to a core component in Halos, Instead of H$$_{0}$$ tension? Astrophys J Lett 892(2):L27. https://doi.org/10.3847/2041-8213/ab8012. arXiv:2001.07182 [astro-ph.CO]

Blumenthal GR, da Costa LN, Goldwirth DS, Lecar M, Piran T (1992) The largest possible voids. Astrophys J 388:234. https://doi.org/10.1086/171147

Bolton AS, Burles S, Koopmans LVE, Treu T, Gavazzi R, Moustakas LA, Wayth R, Schlegel DJ (2008) The sloan lens ACS survey. V. The full ACS strong-lens sample. Astrophys J 682(2):964–984. https://doi.org/10.1086/589327. arXiv:0805.1931 [astro-ph]

Bonamigo M, Grillo C, Ettori S, Caminha GB, Rosati P, Mercurio A, Annunziatella M, Balestra I, Lombardi M (2017) Joining X-ray to lensing: an accurate combined analysis of MACS J0416.1–2403. Astrophys J 842(2):132. https://doi.org/10.3847/1538-4357/aa75cc. arXiv:1705.10322 [astro-ph.GA]

Bonamigo M, Grillo C, Ettori S, Caminha GB, Rosati P, Mercurio A, Munari E, Annunziatella M, Balestra I, Lombardi M (2018) Dissection of the collisional and collisionless mass components in a mini sample of CLASH and HFF massive galaxy clusters at z $$\approx $$ 0.4. Astrophys J 864(1):98. https://doi.org/10.3847/1538-4357/aad4a7. arXiv:1807.10286 [astro-ph.GA]

Bond JR, Cole S, Efstathiou G, Kaiser N (1991) Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys J 379:440. https://doi.org/10.1086/170520

Bonilla A, Kumar S, Nunes RC (2021) Measurements of H$$_{0}$$ and reconstruction of the dark energy properties from a model-independent joint analysis. Eur Phys J C 81(2):127. https://doi.org/10.1140/epjc/s10052-021-08925-z. arXiv:2011.07140 [astro-ph.CO]

Bonvin V, Courbin F, Suyu SH, Marshall PJ, Rusu CE, Sluse D, Tewes M, Wong KC, Collett T, Fassnacht CD, Treu T, Auger MW, Hilbert S, Koopmans LVE, Meylan G, Rumbaugh N, Sonnenfeld A, Spiniello C (2017) H0LiCOW - V. New COSMOGRAIL time delays of HE 0435–1223: H$$_{0}$$ to 3.8 per cent precision from strong lensing in a flat $$\Lambda $$CDM model. Mon Not R Astron Soc 465(4):4914–4930. https://doi.org/10.1093/mnras/stw3006. arXiv:1607.01790 [astro-ph.CO]

Bora K, Desai S (2021) A test of cosmic distance duality relation using SPT-SZ galaxy clusters, Type Ia supernovae, and cosmic chronometers. JCAP 6:052. https://doi.org/10.1088/1475-7516/2021/06/052. arXiv:2104.00974 [astro-ph.CO]

Boran S, Desai S, Kahya EO, Woodard RP (2018) GW170817 falsifies dark matter emulators. Phys Rev D 97(4):041501. https://doi.org/10.1103/PhysRevD.97.041501. arXiv:1710.06168 [astro-ph.HE]

Borghi N, Moresco M, Cimatti A (2022) Towards a better understanding of cosmic chronometers: a new measurement of $$H(z)$$ at $$z\sim 0.7$$. Astrophys J Lett 928:L4. https://doi.org/10.3847/2041-8213/ac3fb2. arXiv:2110.04304 [astro-ph.CO]

Borghi N, Moresco M, Cimatti A, Huchet A, Quai S, Pozzetti L (2022) Toward a better understanding of cosmic chronometers: stellar population properties of passive galaxies at intermediate redshift. Astrophys J 927(2):164. https://doi.org/10.3847/1538-4357/ac3240. arXiv:2106.14894 [astro-ph.GA]

Borhanian S, Dhani A, Gupta A, Arun KG, Sathyaprakash BS (2020) Dark sirens to resolve the Hubble-Lemaître tension. arXiv e-prints arXiv:2007.02883

Boruah SS, Hudson MJ, Lavaux G (2020) Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints. Mon Not R Astron Soc 498(2):2703–2718. https://doi.org/10.1093/mnras/staa2485. arXiv:1912.09383 [astro-ph.CO]

Bos EGP, van de Weygaert R, Dolag K, Pettorino V (2012) The darkness that shaped the void: dark energy and cosmic voids. Mon Not R Astron Soc 426(1):440–461. https://doi.org/10.1111/j.1365-2966.2012.21478.x. arXiv:1205.4238 [astro-ph.CO]

Bosnjak Z, Celotti A, Longo F, Barbiellini G (2008) Energetics-spectral correlations versus the BATSE gamma-ray bursts population. Mon Not R Astron Soc 384(2):599–604. https://doi.org/10.1111/j.1365-2966.2007.12672.x

Boylan-Kolchin M, Weisz DR (2021) Uncertain times: the redshift-time relation from cosmology and stars. Mon Not R Astron Soc 505(2):2764–2783. https://doi.org/10.1093/mnras/stab1521

Bracewell R (1999) The Fourier transform and its applications, 3rd edn. McGraw-Hill, New York

Brouwer MM, Demchenko V, Harnois-Déraps J, Bilicki M, Heymans C, Hoekstra H, Kuijken K, Alpaslan M, Brough S, Cai YC, Costa-Duarte MV, Dvornik A, Erben T, Hildebrandt H, Holwerda BW, Schneider P, Sifón C, van Uitert E (2018) Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey. Mon Not R Astron Soc 481(4):5189–5209. https://doi.org/10.1093/mnras/sty2589. arXiv:1805.00562 [astro-ph.CO]

Bruzual G, Charlot S (2003) Stellar population synthesis at the resolution of 2003. Mon Not R Astron Soc 344:1000–1028. https://doi.org/10.1046/j.1365-8711.2003.06897.x. arXiv:astro-ph/0309134

Bruzual AG (1983) Spectral evolution of galaxies. I—Early-type systems. Astrophys J 273:105–127. https://doi.org/10.1086/161352

Buckley-Geer EJ, Lin H, Rusu CE, Poh J, Palmese A, Agnello A, Christensen L, Frieman J, Shajib AJ, Treu T, Collett T, Birrer S, Anguita T, Fassnacht CD, Meylan G, Mukherjee S, DES Collaboration et al (2020) STRIDES: spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008. Mon Not R Astron Soc 498(3):3241–3274. https://doi.org/10.1093/mnras/staa2563. arXiv:2003.12117 [astro-ph.GA]

Bull P, Ferreira PG, Patel P, Santos MG (2015) Late-time cosmology with 21cm intensity mapping experiments. Astrophys J 803(1):21. https://doi.org/10.1088/0004-637X/803/1/21. arXiv:1405.1452 [astro-ph.CO]

Cañameras R, Schuldt S, Suyu SH, Taubenberger S, Meinhardt T, Leal-Taixé L, Lemon C, Rojas K, Savary E (2020) HOLISMOKES. II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks. Astron Astrophys 644:A163. https://doi.org/10.1051/0004-6361/202038219. arXiv:2004.13048 [astro-ph.GA]

Cai YC, Neyrinck MC, Szapudi I, Cole S, Frenk CS (2014) A possible cold imprint of voids on the microwave background radiation. Astrophys J 786(2):110. https://doi.org/10.1088/0004-637X/786/2/110. arXiv:1301.6136 [astro-ph.CO]

Cai YC, Padilla N, Li B (2015) Testing gravity using cosmic voids. Mon Not R Astron Soc 451:1036–1055. https://doi.org/10.1093/mnras/stv777. arXiv:1410.1510

Cai YC, Taylor A, Peacock JA, Padilla N (2016) Redshift-space distortions around voids. Mon Not R Astron Soc 462:2465–2477. https://doi.org/10.1093/mnras/stw1809. arXiv:1603.05184

Cai YC, Neyrinck M, Mao Q, Peacock JA, Szapudi I, Berlind AA (2017) The lensing and temperature imprints of voids on the cosmic microwave background. Mon Not R Astron Soc 466(3):3364–3375. https://doi.org/10.1093/mnras/stw3299. arXiv:1609.00301 [astro-ph.CO]

Calderón Bustillo J, Leong SHW, Dietrich T, Lasky PD (2021) Mapping the Universe expansion: enabling percent-level measurements of the hubble constant with a single binary neutron-star merger detection. Astrophys J Lett 912(1):L10. https://doi.org/10.3847/2041-8213/abf502. arXiv:2006.11525 [gr-qc]

Camera S, Padmanabhan H (2020) Beyond $$\Lambda $$CDM with H i intensity mapping: robustness of cosmological constraints in the presence of astrophysics. Mon Not R Astron Soc 496(4):4115–4126. https://doi.org/10.1093/mnras/staa1663. arXiv:1910.00022 [astro-ph.CO]

Camera S, Santos MG, Ferreira PG, Ferramacho L (2013) Cosmology on ultra-large scales with HI intensity mapping: limits on primordial non-Gaussianity. Phys Rev Lett 111:171302. https://doi.org/10.1103/PhysRevLett.111.171302. arXiv:1305.6928 [astro-ph.CO]

Caminha GB, Grillo C, Rosati P, Balestra I, Karman W, Lombardi M, Mercurio A, Nonino M, Tozzi P, Zitrin A, Biviano A, Girardi M, Koekemoer AM et al (2016) CLASH-VLT: a highly precise strong lensing model of the galaxy cluster RXC J2248.7–4431 (Abell S1063) and prospects for cosmography. Astron Astrophys 587:A80. https://doi.org/10.1051/0004-6361/201527670. arXiv:1512.04555 [astro-ph.CO]

Caminha GB, Grillo C, Rosati P, Balestra I, Mercurio A, Vanzella E, Biviano A, Caputi KI, Delgado-Correal C, Karman W, Lombardi M, Meneghetti M, Sartoris B, Tozzi P (2017a) A refined mass distribution of the cluster MACS J0416.1–2403 from a new large set of spectroscopic multiply lensed sources. Astron Astrophys 600:A90. https://doi.org/10.1051/0004-6361/201629297. arXiv:1607.03462 [astro-ph.GA]

Caminha GB, Grillo C, Rosati P, Meneghetti M, Mercurio A, Ettori S, Balestra I, Biviano A, Umetsu K, Vanzella E, Annunziatella M, Bonamigo M, Delgado-Correal C, Girardi M, Lombardi M, Nonino M, Sartoris B, Tozzi P, Bartelmann M, Bradley L, Caputi KI, Coe D, Ford H, Fritz A, Gobat R, Postman M, Seitz S, Zitrin A (2017b) Mass distribution in the core of MACS J1206. Robust modeling from an exceptionally large sample of central multiple images. Astron Astrophys 607:A93. https://doi.org/10.1051/0004-6361/201731498. arXiv:1707.00690 [astro-ph.GA]

Caminha GB, Rosati P, Grillo C, Rosani G, Caputi KI, Meneghetti M, Mercurio A, Balestra I, Bergamini P, Biviano A, Nonino M, Umetsu K, Vanzella E, Annunziatella M, Broadhurst T, Delgado-Correal C, Demarco R, Koekemoer AM, Lombardi M, Maier C, Verdugo M, Zitrin A (2019) Strong lensing models of eight CLASH clusters from extensive spectroscopy: accurate total mass reconstructions in the cores. Astron Astrophys 632:A36. https://doi.org/10.1051/0004-6361/201935454. arXiv:1903.05103 [astro-ph.GA]

Caminha GB, Suyu SH, Grillo C, Rosati P (2022) Galaxy cluster strong lensing cosmography. Cosmological constraints from a sample of regular galaxy clusters. Astron Astrophys 657:A83. https://doi.org/10.1051/0004-6361/202141994. arXiv:2110.06232 [astro-ph.CO]

Cantiello M, Raimondo G, Brocato E, Capaccioli M (2003) New Optical and Near-Infrared Surface Brightness Fluctuation Models: A Primary Distance Indicator Ranging from Globular Clusters to Distant Galaxies? Astrophys J 125:2783. https://doi.org/10.1086/375322

Cantiello M, Blakeslee JP, Raimondo G, Mei S, Brocato E, Capaccioli M (2005) Detection of radial surface brightness fluctuations and color gradients in elliptical galaxies with the advanced camera for surveys. Astrophys J 634:239. https://doi.org/10.1086/491694. arXiv:astro-ph/0507699

Cantiello M, Raimondo G, Blakeslee JP, Brocato E, Capaccioli M (2007) Detection of surface brightness fluctuations in elliptical galaxies imaged with the advanced camera for surveys: B- and I-band measurements. Astrophys J 662:940–951. https://doi.org/10.1086/517984. arXiv:astro-ph/0703539

Cantiello M, Biscardi I, Brocato E, Raimondo G (2011) VLT optical BVR observations of two bright supernova Ia hosts in the Virgo cluster. Surface brightness fluctuation analysis. Astron Astrophys 532:A154. https://doi.org/10.1051/0004-6361/201116667

Cantiello M, Blakeslee JP, Ferrarese L, Côté P, Roediger JC, Raimondo G, Peng EW, Gwyn S, Durrell PR, Cuillandre JC (2018a) The next generation virgo cluster survey (NGVS). XVIII. Measurement and calibration of surface brightness fluctuation distances for bright galaxies in virgo (and beyond). Astrophys J 856(2):126. https://doi.org/10.3847/1538-4357/aab043. arXiv:1802.05526 [astro-ph.GA]

Cantiello M, Jensen JB, Blakeslee JP, Berger E, Levan AJ, Tanvir NR, Raimondo G, Brocato E, Alexander KD, Blanchard PK, Branchesi M, Cano Z, Chornock R, Covino S, Cowperthwaite PS, D’Avanzo P, Eftekhari T, Fong W, Fruchter AS, Grado A, Hjorth J, Holz DE, Lyman JD, Mandel I, Margutti R, Nicholl M, Villar VA, Williams PKG (2018b) A precise distance to the host galaxy of the binary neutron star merger GW170817 using surface brightness fluctuations. Astrophys J Lett 854(2):L31. https://doi.org/10.3847/2041-8213/aaad64. arXiv:1801.06080 [astro-ph.GA]

Cao S, Ratra B (2022) Using lower redshift, non-CMB, data to constrain the Hubble constant and other cosmological parameters. Mon Not R Astron Soc 513(4):5686–5700. https://doi.org/10.1093/mnras/stac1184. arXiv:2203.10825 [astro-ph.CO]

Cao S, Qi J, Cao Z, Biesiada M, Li J, Pan Y, Zhu ZH (2019) Direct test of the FLRW metric from strongly lensed gravitational wave observations. Sci Rep 9:11608. https://doi.org/10.1038/s41598-019-47616-4. arXiv:1910.10365 [astro-ph.CO]

Cao S, Ryan J, Khadka N, Ratra B (2021) Cosmological constraints from higher redshift gamma-ray burst, H II starburst galaxy, and quasar (and other) data. Mon Not R Astron Soc 501(1):1520–1538. https://doi.org/10.1093/mnras/staa3748. arXiv:2009.12953 [astro-ph.CO]

Capozziello S, Sen Ruchika AA (2019) Model-independent constraints on dark energy evolution from low-redshift observations. Mon Not R Astron Soc 484(4):4484–4494. https://doi.org/10.1093/mnras/stz176. arXiv:1806.03943 [astro-ph.CO]

Capozziello S, D’Agostino R, Luongo O (2018) Cosmographic analysis with Chebyshev polynomials. Mon Not R Astron Soc 476(3):3924–3938. https://doi.org/10.1093/mnras/sty422. arXiv:1712.04380 [astro-ph.CO]

Capozziello S, D’Agostino R, Luongo O (2019) Extended gravity cosmography. Int J Mod Phys D 28(10):1930016. https://doi.org/10.1142/S0218271819300167. arXiv:1904.01427 [gr-qc]

Cappellari M (2017) Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions. Mon Not R Astron Soc 466(1):798–811. https://doi.org/10.1093/mnras/stw3020. arXiv:1607.08538 [astro-ph.GA]

Caputi KI, Dunlop JS, McLure RJ, Huang JS, Fazio GG, Ashby MLN, Castellano M, Fontana A, Cirasuolo M et al (2012) The nature of extremely red $$H - [4.5] > 4$$ galaxies revealed with SEDS and CANDELS. Astrophys J Lett 750(1):L20. https://doi.org/10.1088/2041-8205/750/1/L20. arXiv:1202.0496 [astro-ph.CO]

Cardiel N (2010) indexf: Line-strength Indices in Fully Calibrated FITS Spectra. https://ascl.net/1010.046

Cardona W, Durrer R, Kunz M, Montanari F (2016) Lensing convergence and the neutrino mass scale in galaxy redshift surveys. Phys Rev D 94(4):043007. https://doi.org/10.1103/PhysRevD.94.043007. arXiv:1603.06481 [astro-ph.CO]

Cardone VF, Capozziello S, Dainotti MG (2009) An updated gamma-ray bursts Hubble diagram. Mon Not R Astron Soc 400(208):775–790. https://doi.org/10.1111/j.1365-2966.2009.15456.x. arXiv:0901.3194 [astro-ph.CO]

Carlsten SG, Beaton RL, Greco JP, Greene JE (2019) Using surface brightness fluctuations to study nearby satellite galaxy systems: calibration and methodology. Astrophys J 879(1):13. https://doi.org/10.3847/1538-4357/ab22c1. arXiv:1901.07575 [astro-ph.GA]

Carlstrom JE, Ade PAR, Aird KA, Benson BA, Bleem LE, Busetti S, Chang CL, Chauvin E, Cho HM, Crawford TM, Crites AT, Dobbs MA, Halverson NW, Heimsath S et al (2011) The 10 meter south pole telescope. PASP 123(903):568. https://doi.org/10.1086/659879. arXiv:0907.4445 [astro-ph.IM]

Carnall AC, McLure RJ, Dunlop JS, Davé R (2018) Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon Not R Astron Soc 480(4):4379–4401. https://doi.org/10.1093/mnras/sty2169. arXiv:1712.04452 [astro-ph.GA]

Carnall AC, McLure RJ, Dunlop JS, Cullen F, McLeod DJ, Wild V, Johnson BD, Appleby S, Davé R, Amorin R, Bolzonella M, Castellano M, Cimatti A, Cucciati O, Gargiulo A, Garilli B, Marchi F, Pentericci L, Pozzetti L, Schreiber C, Talia M, Zamorani G (2019) The VANDELS survey: the star-formation histories of massive quiescent galaxies at $$1.0 < \text{ z } < 1.3$$. Mon Not R Astron Soc 490(1):417–439. https://doi.org/10.1093/mnras/stz2544. arXiv:1903.11082 [astro-ph.GA]

Carrick J, Turnbull SJ, Lavaux G, Hudson MJ (2015) Cosmological parameters from the comparison of peculiar velocities with predictions from the 2M++ density field. Mon Not R Astron Soc 450(1):317–332. https://doi.org/10.1093/mnras/stv547. arXiv:1504.04627 [astro-ph.CO]

Carucci IP, Villaescusa-Navarro F, Viel M (2017) The cross-correlation between 21 cm intensity mapping maps and the Ly$$\alpha $$ forest in the post-reionization era. JCAP 04:001. https://doi.org/10.1088/1475-7516/2017/04/001. arXiv:1611.07527 [astro-ph.CO]

Carucci IP, Irfan MO, Bobin J (2020) Recovery of 21 cm intensity maps with sparse component separation. Mon Not R Astron Soc 499(1):304–319. https://doi.org/10.1093/mnras/staa2854. arXiv:2006.05996 [astro-ph.CO]

Castorina E, White M (2019) Measuring the growth of structure with intensity mapping surveys. JCAP 06:025. https://doi.org/10.1088/1475-7516/2019/06/025. arXiv:1902.07147 [astro-ph.CO]

Castro T, Quartin M (2014) First measurement of $$\sigma $$$$_{8}$$ using supernova magnitudes only. Mon Not R Astron Soc 443:L6–L10. https://doi.org/10.1093/mnrasl/slu071. arXiv:1403.0293

Castro T, Quartin M, Benitez-Herrera S (2016) Turning noise into signal: learning from the scatter in the Hubble diagram. Phys Dark Univ 13:66–76. https://doi.org/10.1016/j.dark.2016.04.006. arXiv:1511.08695 [astro-ph.CO]

Castro-Rodríguez N, López-Corredoira M (2012) The age of extremely red and massive galaxies at very high redshift. Astron Astrophys 537:A31. https://doi.org/10.1051/0004-6361/201117418. arXiv:1111.2726 [astro-ph.CO]

Catelan M (2018) The ages of (the oldest) stars. In: Chiappini C, Minchev I, Starkenburg E, Valentini M (eds) Rediscovering our galaxy. IAU Symposium, vol 334. Cambridge University Press, pp 11–20. https://doi.org/10.1017/S1743921318000868. arXiv:1709.08656 [astro-ph.SR]

Cautun M, Cai YC, Frenk CS (2016) The view from the boundary: a new void stacking method. Mon Not R Astron Soc 457(3):2540–2553. https://doi.org/10.1093/mnras/stw154. arXiv:1509.00010 [astro-ph.CO]

Cautun M, Paillas E, Cai YC, Bose S, Armijo J, Li B, Padilla N (2018) The Santiago-Harvard-Edinburgh-Durham void comparison—I. SHEDding light on chameleon gravity tests. Mon Not R Astron Soc 476(3):3195–3217. https://doi.org/10.1093/mnras/sty463. arXiv:1710.01730 [astro-ph.CO]

Ceccarelli L, Paz D, Lares M, Padilla N, Lambas DG (2013) Clues on void evolution—I. Large-scale galaxy distributions around voids. Mon Not R Astron Soc 434(2):1435–1442. https://doi.org/10.1093/mnras/stt1097. arXiv:1306.5798 [astro-ph.CO]

Ceccarelli L, Ruiz AN, Lares M, Paz DJ, Maldonado VE, Luparello HE, Garcia Lambas D (2016) The sparkling Universe: a scenario for cosmic void motions. Mon Not R Astron Soc 461(4):4013–4021. https://doi.org/10.1093/mnras/stw1524. arXiv:1511.06741 [astro-ph.CO]

Cerviño M, Luridiana V, Jamet L (2008) On surface brightness fluctuations: probabilistic and statistical bases. I. Stellar population and theoretical surface brightness fluctuations. Astron Astrophys 491(3):693–701. https://doi.org/10.1051/0004-6361:20077515. arXiv:0809.4491 [astro-ph]

Chabrier G (2003) Galactic stellar and substellar initial mass function. PASP 115(809):763–795. https://doi.org/10.1086/376392. arXiv:astro-ph/0304382 [astro-ph]

Chan KC, Hamaus N (2021) Volume statistics as a probe of large-scale structure. Phys Rev D 103(4):043502. https://doi.org/10.1103/PhysRevD.103.043502. arXiv:2010.13955 [astro-ph.CO]

Chan KC, Hamaus N, Desjacques V (2014) Large-scale clustering of cosmic voids. Phys Rev D 90(10):103521. https://doi.org/10.1103/PhysRevD.90.103521. arXiv:1409.3849

Chan KC, Hamaus N, Biagetti M (2019) Constraint of void bias on primordial non-Gaussianity. Phys Rev D 99(12):121304. https://doi.org/10.1103/PhysRevD.99.121304. arXiv:1812.04024 [astro-ph.CO]

Chang TC, Pen UL, Peterson JB, McDonald P (2008) Baryon acoustic oscillation intensity mapping as a test of dark energy. Phys Rev Lett 100:091303. https://doi.org/10.1103/PhysRevLett.100.091303. arXiv:0709.3672 [astro-ph]

Chang TC, Pen UL, Bandura K, Peterson JB (2010) Hydrogen 21-cm intensity mapping at redshift 0.8. Nature 466:463–465. https://doi.org/10.1038/nature09187. arXiv:1007.3709 [astro-ph.CO]

Chantavat T, Sawangwit U, Wandelt BD (2017) Void profile from Planck lensing potential map. Astrophys J 836(2):156. https://doi.org/10.3847/1538-4357/836/2/156. arXiv:1702.01009 [astro-ph.CO]

Chapman E, Abdalla FB, Harker G, Jelic V, Labropoulos P, Zaroubi S, Brentjens MA, de Bruyn AG, Koopmans LVE (2012) Foreground Removal using FastICA: a Showcase of LOFAR-EoR. Mon Not R Astron Soc 423:2518–2532. https://doi.org/10.1111/j.1365-2966.2012.21065.x. arXiv:1201.2190 [astro-ph.CO]

Chapman E et al (2013) The scale of the problem: recovering images of reionization with GMCA. Mon Not R Astron Soc 429:165. https://doi.org/10.1093/mnras/sts333. arXiv:1209.4769 [astro-ph.CO]

Charlot P, Jacobs CS, Gordon D, Lambert S, de Witt A, Böhm J, Fey AL, Heinkelmann R, Skurikhina E, Titov O, Arias EF, Bolotin S, Bourda G, Ma C, Malkin Z, Nothnagel A, Mayer D, MacMillan DS, Nilsson T, Gaume R (2020) The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron Astrophys 644:A159. https://doi.org/10.1051/0004-6361/202038368. arXiv:2010.13625 [astro-ph.GA]

Chatterjee D, Hegade KRA, Holder G, Holz DE, Perkins S, Yagi K, Yunes N (2021) Cosmology with Love: Measuring the Hubble constant using neutron star universal relations. Phys Rev D 104(8):083528. https://doi.org/10.1103/PhysRevD.104.083528. arXiv:2106.06589 [gr-qc]

Chen HY, Holz DE (2016) Finding the One: Identifying the Host Galaxies of Gravitational-Wave Sources. arXiv e-prints arXiv:1612.01471

Chen GCF, Suyu SH, Wong KC, Fassnacht CD, Chiueh T, Halkola A, Hu IS, Auger MW, Koopmans LVE, Lagattuta DJ, McKean JP, Vegetti S (2016a) SHARP—III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays. Mon Not R Astron Soc 462(4):3457–3475. https://doi.org/10.1093/mnras/stw991. arXiv:1601.01321 [astro-ph.CO]

Chen Z, Zhou B, Fu X (2016b) Testing the distance-duality relation from Hubble, galaxy clusters and Type Ia supernovae data with model independent methods. Int J Theor Phys 55(2):1229–1240. https://doi.org/10.1007/s10773-015-2765-1

Chen HY, Fishbach M, Holz DE (2018) A two per cent Hubble constant measurement from standard sirens within five years. Nature 562(7728):545–547. https://doi.org/10.1038/s41586-018-0606-0. arXiv:1712.06531 [astro-ph.CO]

Chen GCF, Fassnacht CD, Suyu SH, Rusu CE, Chan JHH, Wong KC, Auger MW, Hilbert S, Bonvin V, Birrer S, Millon M, Koopmans LVE, Lagattuta DJ, McKean JP, Vegetti S, Courbin F, Ding X, Halkola A, Jee I, Shajib AJ, Sluse D, Sonnenfeld A, Treu T (2019) A SHARP view of H0LiCOW: H$$_{0}$$ from three time-delay gravitational lens systems with adaptive optics imaging. Mon Not R Astron Soc 490(2):1743–1773. https://doi.org/10.1093/mnras/stz2547. arXiv:1907.02533 [astro-ph.CO]

Chen GCF, Fassnacht CD, Suyu SH, Koopmans LVE, Lagattuta DJ, McKean JP, Auger MW, Vegetti S, Treu T (2021a) SHARP VIII: J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging. arXiv e-prints arXiv:2107.10304

Chen Z, Wolz L, Spinelli M, Murray SG (2021b) Extracting H i astrophysics from interferometric intensity mapping. Mon Not R Astron Soc 502(4):5259–5276. https://doi.org/10.1093/mnras/stab386. arXiv:2010.07985 [astro-ph.CO]

Chernoff DF, Finn LS (1993) Gravitational radiation, inspiraling binaries, and cosmology. Astrophys J Lett 411:L5. https://doi.org/10.1086/186898. arXiv:gr-qc/9304020 [gr-qc]

Chevallard J, Charlot S (2016) Modelling and interpreting spectral energy distributions of galaxies with BEAGLE. Mon Not R Astron Soc 462(2):1415–1443. https://doi.org/10.1093/mnras/stw1756. arXiv:1603.03037 [astro-ph.GA]

Chevallier M, Polarski D (2001) Accelerating Universes with scaling dark matter. Int J Mod Phys D 10(2):213–223. https://doi.org/10.1142/S0218271801000822. arXiv:gr-qc/0009008 [gr-qc]

Chirivì G, Suyu SH, Grillo C, Halkola A, Balestra I, Caminha GB, Mercurio A, Rosati P (2018) MACS J0416.1–2403: Impact of line-of-sight structures on strong gravitational lensing modelling of galaxy clusters. Astron Astrophys 614:A8. https://doi.org/10.1051/0004-6361/201731433. arXiv:1706.07815 [astro-ph.CO]

Choi J, Conroy C, Moustakas J, Graves GJ, Holden BP, Brodwin M, Brown MJI, van Dokkum PG (2014) The assembly histories of quiescent galaxies since $$z = 0.7$$ from absorption line spectroscopy. Astrophys J 792:95. https://doi.org/10.1088/0004-637X/792/2/95. arXiv:1403.4932

Christlieb N (2016) Age determination of metal-poor halo stars using nucleochronometry. Astron Nachr 337(8–9):931. https://doi.org/10.1002/asna.201612401

Chuang CH, Kitaura FS, Liang Y, Font-Ribera A, Zhao C, McDonald P, Tao C (2017) Linear redshift space distortions for cosmic voids based on galaxies in redshift space. Phys Rev D 95:063528. https://doi.org/10.1103/PhysRevD.95.063528. arXiv:1605.05352

Chudaykin A, Dolgikh K, Ivanov MM (2021) Constraints on the curvature of the Universe and dynamical dark energy from the Full-shape and BAO data. Phys Rev D 103(2):023507. https://doi.org/10.1103/PhysRevD.103.023507. arXiv:2009.10106 [astro-ph.CO]

Cid Fernandes R, Mateus A, Sodré L, Stasińska G, Gomes JM (2005) Semi-empirical analysis of Sloan Digital Sky Survey galaxies—I. Spectral synthesis method. Mon Not R Astron Soc 358(2):363–378. https://doi.org/10.1111/j.1365-2966.2005.08752.x. arXiv:astro-ph/0412481 [astro-ph]

Cimatti A, Daddi E, Renzini A, Cassata P, Vanzella E, Pozzetti L, Cristiani S, Fontana A, Rodighiero G, Mignoli M, Zamorani G (2004) Old galaxies in the young Universe. Nature 430(6996):184–187. https://doi.org/10.1038/nature02668. arXiv:astro-ph/0407131 [astro-ph]

Citro A, Pozzetti L, Moresco M, Cimatti A (2016) Inferring the star-formation histories of the most massive and passive early-type galaxies at $$\text{ z } < 0.3$$. Astron Astrophys 592:A19. https://doi.org/10.1051/0004-6361/201527772. arXiv:1604.07826 [astro-ph.GA]

Citro A, Pozzetti L, Quai S, Moresco M, Vallini L, Cimatti A (2017) A methodology to select galaxies just after the quenching of star formation. Mon Not R Astron Soc 469:3108–3124. https://doi.org/10.1093/mnras/stx932. arXiv:1704.05462

Clampitt J, Jain B (2015) Lensing measurements of the mass distribution in SDSS voids. Mon Not R Astron Soc 454:3357–3365. https://doi.org/10.1093/mnras/stv2215. arXiv:1404.1834

Clampitt J, Cai YC, Li B (2013) Voids in modified gravity: excursion set predictions. Mon Not R Astron Soc 431(1):749–766. https://doi.org/10.1093/mnras/stt219. arXiv:1212.2216 [astro-ph.CO]

Coe D, Salmon B, Bradač M, Bradley LD, Sharon K, Zitrin A, Acebron A, Cerny C, Cibirka N, Strait V et al (2019) RELICS: reionization lensing cluster survey. Astrophys J 884(1):85. https://doi.org/10.3847/1538-4357/ab412b. arXiv:1903.02002 [astro-ph.GA]

Cohen Y, van Dokkum P, Danieli S, Romanowsky AJ, Abraham R, Merritt A, Zhang J, Mowla L, Kruijssen JMD, Conroy C, Wasserman A (2018) The dragonfly nearby galaxies survey. V. HST/ACS observations of 23 low surface brightness objects in the fields of NGC 1052, NGC 1084, M96, and NGC 4258. Astrophys J 868(2):96. https://doi.org/10.3847/1538-4357/aae7c8. arXiv:1807.06016 [astro-ph.GA]

Colberg JM, Pearce F, Foster C, Platen E, Brunino R, Neyrinck M, Basilakos S, Fairall A, Feldman H, Gottlöber S, Hahn O, Hoyle F, Müller V, Nelson L, Plionis M, Porciani C, Shandarin S, Vogeley MS, van de Weygaert R (2008) The Aspen-Amsterdam void finder comparison project. Mon Not R Astron Soc 387(2):933–944. https://doi.org/10.1111/j.1365-2966.2008.13307.x. arXiv:0803.0918 [astro-ph]

Cole S, Percival WJ, Peacock JA, Norberg P, Baugh CM, Frenk CS, Baldry I, Bland-Hawthorn J, Bridges T, Cannon R, Colless M, Collins C, Couch W, Cross NJG, Dalton G, Eke VR, De Propris R, Driver SP, Efstathiou G, Ellis RS, Glazebrook K, Jackson C, Jenkins A, Lahav O, Lewis I, Lumsden S, Maddox S, Madgwick D, Peterson BA, Sutherland W, Taylor K (2005) The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Mon Not R Astron Soc 362(2):505–534. https://doi.org/10.1111/j.1365-2966.2005.09318.x. arXiv:astro-ph/0501174 [astro-ph]

Coles JP, Read JI, Saha P (2014) Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens. Mon Not R Astron Soc 445(3):2181–2197. https://doi.org/10.1093/mnras/stu1781. arXiv:1401.7990 [astro-ph.CO]

Colgáin EÓ, Sheikh-Jabbari MM (2021) Elucidating cosmological model dependence with $$H_0$$. arXiv e-prints arXiv:2101.08565 [astro-ph.CO]

Colgáin EÓ, Yavartanoo H (2019) Testing the Swampland: $$H_0$$ tension. arXiv e-prints arXiv:1905.02555

Colgáin EÓ, Sheikh-Jabbari MM, Yin L (2021) Can dark energy be dynamical? arXiv e-prints arXiv:2104.01930

Colgáin EÓ, Sheikh-Jabbari MM, Solomon R, Bargiacchi G, Capozziello S, Dainotti MG, Stojkovic D (2022a) Revealing intrinsic Flat $$\Lambda $$CDM biases with standardizable candles. arXiv e-prints arXiv:2203.10558

Colgáin EÓ, Sheikh-Jabbari MM, Solomon R, Dainotti MG, Stojkovic D (2022b) Putting flat $$\Lambda $$CDM in the (redshift) Bin. arXiv e-prints arXiv:2206.11447

Collett TE (2015) The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys. Astrophys J 811(1):20. https://doi.org/10.1088/0004-637X/811/1/20. arXiv:1507.02657 [astro-ph.CO]

Comparat J, Maraston C, Goddard D, Gonzalez-Perez V, Lian J, Meneses-Goytia S, Thomas D, Brownstein JR, Tojeiro R, Finoguenov A, Merloni A, Prada F, Salvato M, Zhu GB, Zou H, Brinkmann J (2017) Stellar population properties for 2 million galaxies from SDSS DR14 and DEEP2 DR4 from full spectral fitting. arXiv e-prints arXiv:1711.06575 [astro-ph.GA]

Comparat J, Merloni A, Dwelly T, Salvato M, Schwope A, Coffey D, Wolf J, Arcodia R, Liu T, Buchner J, Nandra K, Georgakakis A, Clerc N, Brusa M, Brownstein JR, Schneider DP, Pan K, Bizyaev D (2020) The final SDSS-IV/SPIDERS X-ray point source spectroscopic catalogue. Astron Astrophys 636:A97. https://doi.org/10.1051/0004-6361/201937272. arXiv:1912.03068 [astro-ph.GA]

Conroy C, Gunn JE (2010) The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys J 712(2):833–857. https://doi.org/10.1088/0004-637X/712/2/833. arXiv:0911.3151 [astro-ph.CO]

Conroy C, van Dokkum P (2012) Counting low-mass stars in integrated light. Astrophys J 747(1):69. https://doi.org/10.1088/0004-637X/747/1/69. arXiv:1109.0007 [astro-ph.CO]

Conroy C, Gunn JE, White M (2009) The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys J 699(1):486–506. https://doi.org/10.1088/0004-637X/699/1/486. arXiv:0809.4261 [astro-ph]

Conroy C, Graves GJ, van Dokkum PG (2014) Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys J 780(1):33. https://doi.org/10.1088/0004-637X/780/1/33. arXiv:1303.6629 [astro-ph.CO]

Contarini S, Ronconi T, Marulli F, Moscardini L, Veropalumbo A, Baldi M (2019) Cosmological exploitation of the size function of cosmic voids identified in the distribution of biased tracers. Mon Not R Astron Soc 488(3):3526–3540. https://doi.org/10.1093/mnras/stz1989. arXiv:1904.01022 [astro-ph.CO]

Contarini S, Marulli F, Moscardini L, Veropalumbo A, Giocoli C, Baldi M (2021) Cosmic voids in modified gravity models with massive neutrinos. Mon Not R Astron Soc 504(4):5021–5038. https://doi.org/10.1093/mnras/stab1112. arXiv:2009.03309 [astro-ph.CO]

Cooke R (2020) The ACCELERATION programme: I. Cosmology with the redshift drift. Mon Not R Astron Soc 492(2):2044–2057. https://doi.org/10.1093/mnras/stz3465. arXiv:1912.04983 [astro-ph.CO]

Corasaniti PS, Huterer D, Ar Melchiorri (2007) Exploring the dark energy redshift desert with the Sandage-Loeb test. Phys Rev D 75(6):062001. https://doi.org/10.1103/PhysRevD.75.062001. arXiv:astro-ph/0701433 [astro-ph]

Correa CM, Paz DJ, Padilla ND, Ruiz AN, Angulo RE, Sánchez AG (2019) Non-fiducial cosmological test from geometrical and dynamical distortions around voids. Mon Not R Astron Soc 485(4):5761–5772. https://doi.org/10.1093/mnras/stz821. arXiv:1811.12251 [astro-ph.CO]

Correa CM, Paz DJ, Sánchez AG, Ruiz AN, Padilla ND, Angulo RE (2021) Redshift-space effects in voids and their impact on cosmological tests. Part I: the void size function. Mon Not R Astron Soc 500(1):911–925. https://doi.org/10.1093/mnras/staa3252. arXiv:2007.12064 [astro-ph.CO]

Correa CM, Paz DJ, Padilla ND, Sánchez AG, Ruiz AN, Angulo RE (2022) Redshift-space effects in voids and their impact on cosmological tests—II. The void-galaxy cross-correlation function. Mon Not R Astron Soc 509(2):1871–1884. https://doi.org/10.1093/mnras/stab3070. arXiv:2107.01314 [astro-ph.CO]

Cosmic Visions 21 cm Collaboration, Ansari R, Arena EJ, Bandura K, Bull P, Castorina E, Chang TC, Chen SF, Connor L, Foreman S, Frisch J et al (2018) Inflation and early dark energy with a stage II hydrogen intensity mapping experiment. arXiv e-prints arXiv:1810.09572 [astro-ph.CO]

Courbin F, Chantry V, Revaz Y, Sluse D, Faure C, Tewes M, Eulaers E, Koleva M, Asfandiyarov I, Dye S, Magain P, van Winckel H, Coles J, Saha P, Ibrahimov M, Meylan G (2011) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435–1223. Astron Astrophys 536:A53. https://doi.org/10.1051/0004-6361/201015709. arXiv:1009.1473 [astro-ph.CO]

Courbin F, Bonvin V, Buckley-Geer E, Fassnacht CD, Frieman J, Lin H, Marshall PJ, Suyu SH, Treu T, Anguita T, Motta V et al (2018) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring. Astron Astrophys 609:A71. https://doi.org/10.1051/0004-6361/201731461

Courbin F, Bonvin V, Buckley-Geer E, Fassnacht CD, Frieman J, Lin H, Marshall PJ, Suyu SH, Treu T, Anguita T, Motta V et al (2018) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring. Astron Astrophys 609:A71. https://doi.org/10.1051/0004-6361/201731461

Cousinou MC, Pisani A, Tilquin A, Hamaus N, Hawken AJ, Escoffier S (2019) Multivariate analysis of cosmic void characteristics. Astron Comput 27:53. https://doi.org/10.1016/j.ascom.2019.03.001. arXiv:1805.07181 [astro-ph.CO]

Creminelli P, Vernizzi F (2017) Dark energy after GW170817 and GRB170817A. Phys Rev Lett 119(25):251302. https://doi.org/10.1103/PhysRevLett.119.251302

Crighton NH et al (2015) The neutral hydrogen cosmological mass density at z = 5. Mon Not R Astron Soc 452(1):217–234. https://doi.org/10.1093/mnras/stv1182. arXiv:1506.02037 [astro-ph.CO]

Crisostomi M, Koyama K (2018) Self-accelerating universe in scalar-tensor theories after GW170817. Phys Rev D 97(8):084004. https://doi.org/10.1103/PhysRevD.97.084004. arXiv:1712.06556 [astro-ph.CO]

Cunnington S, Wolz L, Pourtsidou A, Bacon D (2019) Impact of foregrounds on HI intensity mapping cross-correlations with optical surveys. Mon Not R Astron Soc 488(4):5452–5472. https://doi.org/10.1093/mnras/stz1916. arXiv:1904.01479 [astro-ph.CO]

Cunnington S, Camera S, Pourtsidou A (2020a) The degeneracy between primordial non-Gaussianity and foregrounds in 21 cm intensity mapping experiments. Mon Not R Astron Soc 499(3):4054–4067. https://doi.org/10.1093/mnras/staa2986. arXiv:2007.12126 [astro-ph.CO]

Cunnington S, Pourtsidou A, Soares PS, Blake C, Bacon D (2020b) Multipole expansion for H i intensity mapping experiments: simulations and modelling. Mon Not R Astron Soc 496(1):415–433. https://doi.org/10.1093/mnras/staa1524. arXiv:2002.05626 [astro-ph.CO]

Cunnington S, Irfan MO, Carucci IP, Pourtsidou A, Bobin J (2021a) 21-cm foregrounds and polarization leakage: cleaning and mitigation strategies. Mon Not R Astron Soc 504(1):208–227. https://doi.org/10.1093/mnras/stab856. arXiv:2010.02907 [astro-ph.CO]

Cunnington S, Watkinson C, Pourtsidou A (2021b) The H i intensity mapping bispectrum including observational effects. Mon Not R Astron Soc 507(2):1623–1639. https://doi.org/10.1093/mnras/stab2200. arXiv:2102.11153 [astro-ph.CO]

Cunnington S et al (2022) HI intensity mapping with MeerKAT: power spectrum detection in cross-correlation with WiggleZ galaxies. arXiv e-prints arXiv:2206.01579 [astro-ph.CO]

Cutri RM, Skrutskie MF, van Dyk S, Beichman CA, Carpenter JM, Chester T, Cambresy L, Evans T, Fowler J, Gizis J, Howard E, Huchra J, Jarrett T, Kopan EL, Kirkpatrick JD, Light RM, Marsh KA, McCallon H, Schneider S, Stiening R, Sykes M, Weinberg M, Wheaton WA, Wheelock S, Zacarias N (2003) VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003). VizieR Online Data Catalog II/246

Daddi E, Cimatti A, Renzini A, Vernet J, Conselice C, Pozzetti L, Mignoli M, Tozzi P, Broadhurst T, di Serego Alighieri S, Fontana A, Nonino M, Rosati P, Zamorani G (2004) Near-infrared bright galaxies at $$z \simeq 2$$ entering the spheroid formation epoch? Astrophys J Lett 600(2):L127–L130. https://doi.org/10.1086/381020. arXiv:astro-ph/0308456 [astro-ph]

Daddi E, Renzini A, Pirzkal N, Cimatti A, Malhotra S, Stiavelli M, Xu C, Pasquali A, Rhoads JE, Brusa M, di Serego Alighieri S, Ferguson HC, Koekemoer AM, Moustakas LA, Panagia N, Windhorst RA (2005) Passively evolving early-type galaxies at $$1.4 {\lesssim } z {\lesssim } 2.5$$ in the hubble ultra deep field. Astrophys J 626(2):680–697. https://doi.org/10.1086/430104. arXiv:astro-ph/0503102 [astro-ph]

D’Agostino R, Nunes RC (2019) Probing observational bounds on scalar-tensor theories from standard sirens. Phys Rev D 100(4):044041. https://doi.org/10.1103/PhysRevD.100.044041. arXiv:1907.05516 [gr-qc]

D’Agostino R, Nunes RC (2020) Measurements of H$$_{0}$$ in modified gravity theories: the role of lensed quasars in the late-time Universe. Phys Rev D 101(10):103505. https://doi.org/10.1103/PhysRevD.101.103505. arXiv:2002.06381 [astro-ph.CO]

Dahle H, Gladders MD, Sharon K, Bayliss MB, Wuyts E, Abramson LE, Koester BP, Groeneboom N, Brinckmann TE, Kristensen MT, Lindholmer MO, Nielsen A, Krogager JK, Fynbo JPU (2013) SDSS J2222+2745: a gravitationally lensed sextuple quasar with a maximum image separation of 15.’’1 discovered in the sloan giant arcs survey. Astrophys J 773(2):146. https://doi.org/10.1088/0004-637X/773/2/146. arXiv:1211.1091 [astro-ph.CO]

Dahle H, Gladders MD, Sharon K, Bayliss MB, Rigby JR (2015) Time delay measurements for the cluster-lensed sextuple quasar SDSS J2222+2745. Astrophys J 813(1):67. https://doi.org/10.1088/0004-637X/813/1/67. arXiv:1505.06187 [astro-ph.CO]

Dainotti MG, Amati L (2018) Gamma-ray burst prompt correlations: selection and instrumental effects. PASP 130(987):051001. https://doi.org/10.1088/1538-3873/aaa8d7. arXiv:1704.00844 [astro-ph.HE]

Dainotti MG, Cardone VF, Capozziello S (2008) A time-luminosity correlation for $$\gamma $$-ray bursts in the X-rays. Mon Not R Astron Soc 391(1):L79–L83. https://doi.org/10.1111/j.1745-3933.2008.00560.x. arXiv:0809.1389 [astro-ph]

Dainotti MG, Livermore S, Kann DA, Li L, Oates S, Yi S, Zhang B, Gendre B, Cenko B, Fraija N (2020) The optical luminosity-time correlation for more than 100 gamma-ray burst afterglows. Astrophys J Lett 905(2):L26. https://doi.org/10.3847/2041-8213/abcda9. arXiv:2011.14493 [astro-ph.HE]

Dainotti MG, De Simone B, Schiavone T, Montani G, Rinaldi E, Lambiase G (2021) On the hubble constant tension in the SNe Ia pantheon sample. Astrophys J 912(2):150. https://doi.org/10.3847/1538-4357/abeb73. arXiv:2103.02117 [astro-ph.CO]

Dainotti MG, Bargiacchi G, Lenart AŁ, Capozziello S, Ó Colgáin E, Solomon R, Stojkovic D, Sheikh-Jabbari MM (2022a) Quasar standardization: overcoming selection biases and redshift evolution. Astrophys J 931(2):106. https://doi.org/10.3847/1538-4357/ac6593. arXiv:2203.12914 [astro-ph.HE]

Dainotti MG, De Simone BD, Schiavone T, Montani G, Rinaldi E, Lambiase G, Bogdan M, Ugale S (2022b) On the evolution of the Hubble constant with the SNe Ia pantheon sample and baryon acoustic oscillations: a feasibility study for GRB-cosmology in 2030. Galaxies 10(1):24. https://doi.org/10.3390/galaxies10010024. arXiv:2201.09848 [astro-ph.CO]

Dalal N, Holz DE, Hughes SA, Jain B (2006) Short GRB and binary black hole standard sirens as a probe of dark energy. Phys Rev D 74(6):063006. https://doi.org/10.1103/PhysRevD.74.063006. arXiv:astro-ph/0601275 [astro-ph]

Dálya G, Galgóczi G, Dobos L, Frei Z, Heng IS, Macas R, Messenger C, Raffai P, de Souza RS (2018) GLADE: a galaxy catalogue for multimessenger searches in the advanced gravitational-wave detector era. Mon Not R Astron Soc 479(2):2374–2381. https://doi.org/10.1093/mnras/sty1703. arXiv:1804.05709 [astro-ph.HE]

Collaboration Dark Energy Survey, Abbott T, Abdalla FB, Aleksić J, Allam S, Amara A, Bacon D, Balbinot E, Banerji M, Bechtol K, Benoit-Lévy A, Bernstein GM, Bertin E, Blazek J, Bonnett C, Bridle S, Brooks D, Brunner RJ et al (2016) The Dark Energy Survey: more than dark energy—an overview. Mon Not R Astron Soc 460(2):1270–1299. https://doi.org/10.1093/mnras/stw641. arXiv:1601.00329 [astro-ph.CO]

Darling J (2012) Toward a direct measurement of the cosmic acceleration. ApJL 761(2):L26. https://doi.org/10.1088/2041-8205/761/2/L26. arXiv:1211.4585 [astro-ph.CO]

Davidzon I, Ilbert O, Laigle C, Coupon J, McCracken HJ, Delvecchio I, Masters D, Capak P, Hsieh BC, Le Fèvre O, Tresse L, Bethermin M, Chang YY, Faisst AL, Le Floc’h E, Steinhardt C, Toft S, Aussel H, Dubois C, Hasinger G, Salvato M, Sanders DB, Scoville N, Silverman JD (2017) The COSMOS2015 galaxy stellar mass function. Thirteen billion years of stellar mass assembly in ten snapshots. Astron Astrophys 605:A70. https://doi.org/10.1051/0004-6361/201730419. arXiv:1701.02734 [astro-ph.GA]

Davies CT, Cautun M, Li B (2019) Cosmological test of gravity using weak lensing voids. Mon Not R Astron Soc 490(4):4907–4917. https://doi.org/10.1093/mnras/stz2933. arXiv:1907.06657 [astro-ph.CO]

Davis TM et al (2011) The effect of peculiar velocities on supernova cosmology. Astrophys J 741:67. https://doi.org/10.1088/0004-637X/741/1/67. arXiv:1012.2912 [astro-ph.CO]

Dawson KS, Schlegel DJ, Ahn CP, Anderson SF, Aubourg É, Bailey S, Barkhouser RH, Bautista JE, Beifiori A, Berlind AA, Bhardwaj V, Bizyaev D, Blake CH et al (2013) The Baryon oscillation spectroscopic survey of SDSS-III. Astrophys J 145(1):10. https://doi.org/10.1088/0004-6256/145/1/10. arXiv:1208.0022 [astro-ph.CO]

de Jaeger T, Stahl BE, Zheng W, Filippenko AV, Riess AG, Galbany L (2020) A measurement of the Hubble constant from Type II supernovae. Mon Not R Astron Soc 496(3):3402–3411. https://doi.org/10.1093/mnras/staa1801. arXiv:2006.03412 [astro-ph.CO]

de Jong RS, Agertz O, Berbel AA, Aird J, Alexander DA, Amarsi A, Anders F, Andrae R, Ansarinejad B, Ansorge W, Antilogus P, Anwand-Heerwart H, Arentsen A, Arnadottir A, Asplund M, Auger M, Azais N et al (2019) 4MOST: project overview and information for the First Call for Proposals. Messenger 175:3–11. https://doi.org/10.18727/0722-6691/5117. arXiv:1903.02464 [astro-ph.IM]

De Paolis F, Nucita AA, Strafella F, Licchelli D, Ingrosso G (2020) A Quasar microlensing event towards J1249+3449? Mon Not R Astron Soc 499(1):L87–L90. https://doi.org/10.1093/mnrasl/slaa140. arXiv:2008.02692 [astro-ph.GA]

Del Pozzo W (2012) Inference of cosmological parameters from gravitational waves: applications to second generation interferometers. Phys Rev D 86(4):043011. https://doi.org/10.1103/PhysRevD.86.043011. arXiv:1108.1317 [astro-ph.CO]

Del Pozzo W, Li TGF, Messenger C (2017) Cosmological inference using only gravitational wave observations of binary neutron stars. Phys Rev D 95(4):043502. https://doi.org/10.1103/PhysRevD.95.043502. arXiv:1506.06590 [gr-qc]

Delubac T, Bautista JE, Busca NG, Rich J, Kirkby D, Bailey S, Font-Ribera A, Slosar A, Lee KG, Pieri MM et al (2015) Baryon acoustic oscillations in the Ly$$\alpha $$ forest of BOSS DR11 quasars. Astron Astrophys 574:A59. https://doi.org/10.1051/0004-6361/201423969. arXiv:1404.1801 [astro-ph.CO]

Demianski M, Piedipalumbo E, Sawant D, Amati L (2017) Cosmology with gamma-ray bursts. I. The Hubble diagram through the calibrated E$$_{p, I}$$-E$$_{iso}$$ correlation. Astron Astrophys 598:A112. https://doi.org/10.1051/0004-6361/201628909. arXiv:1610.00854 [astro-ph.CO]

Demianski M, Lusso E, Paolillo M, Piedipalumbo E, Risaliti G (2020) Investigating dark energy equation of state with high redshift Hubble diagram. Front Astron Space Sci 7:69. https://doi.org/10.3389/fspas.2020.521056. arXiv:2010.05289 [astro-ph.CO]

Demianski M, Piedipalumbo E, Sawant D, Amati L (2021) Prospects of high redshift constraints on dark energy models with the E$$_{p, i}$$ - E$$_{iso}$$ correlation in long gamma ray bursts. Mon Not R Astron Soc 506(1):903–918. https://doi.org/10.1093/mnras/stab1669

Deshmukh S, Caputi KI, Ashby MLN, Cowley WI, McCracken HJ, Fynbo JPU, Le Fèvre O, Milvang-Jensen B, Ilbert O (2018) The spitzer matching survey of the UltraVISTA ultra-deep stripes (SMUVS): the evolution of dusty and nondusty galaxies with stellar mass at z = 2–6. Astrophys J 864(2):166. https://doi.org/10.3847/1538-4357/aad9f5. arXiv:1712.03905 [astro-ph.GA]

DESI Collaboration, Aghamousa A et al (2016) The DESI experiment part I: science,targeting, and survey design. arXiv e-prints arXiv:1611.00036 [astro-ph.IM]

Desjacques V, Jeong D, Schmidt F (2018) Large-scale galaxy bias. Phys Rep 733:1–193. https://doi.org/10.1016/j.physrep.2017.12.002. arXiv:1611.09787 [astro-ph.CO]

Di Valentino E, Melchiorri A, Silk J (2016) Reconciling Planck with the local value of H$$_{0}$$ in extended parameter space. Phys Lett B 761:242–246. https://doi.org/10.1016/j.physletb.2016.08.043. arXiv:1606.00634 [astro-ph.CO]

Di Valentino E, Gariazzo S, Mena O, Vagnozzi S (2020) Soundness of dark energy properties. JCAP 7:045. https://doi.org/10.1088/1475-7516/2020/07/045. arXiv:2005.02062 [astro-ph.CO]

Di Valentino E, Mena O, Pan S, Visinelli L, Yang W, Melchiorri A, Mota DF, Riess AG, Silk J (2021) In the realm of the Hubble tension-a review of solutions. Class Quantum Grav 38(15):153001. https://doi.org/10.1088/1361-6382/ac086d. arXiv:2103.01183 [astro-ph.CO]

Díaz-García LA, Cenarro AJ, López-Sanjuan C, Ferreras I, Cerviño M, Fernández-Soto A, González Delgado RM, Márquez I et al (2019) Stellar populations of galaxies in the ALHAMBRA survey up to $$z \sim 1$$. II. Stellar content of quiescent galaxies within the dust-corrected stellar mass-colour and the UVJ colour-colour diagrams. Astron Astrophys 631:A156. https://doi.org/10.1051/0004-6361/201832788. arXiv:1711.10590 [astro-ph.GA]

Ding X, Biesiada M, Zheng X, Liao K, Li Z, Zhu ZH (2019) Cosmological inference from standard sirens without redshift measurements. JCAP 4:033. https://doi.org/10.1088/1475-7516/2019/04/033. arXiv:1801.05073 [astro-ph.CO]

Dobie D, Kaplan DL, Hotokezaka K, Murphy T, Deller A, Hallinan G, Nissanke S (2020) Constraining properties of neutron star merger outflows with radio observations. Mon Not R Astron Soc 494(2):2449–2464. https://doi.org/10.1093/mnras/staa789. arXiv:1910.13662 [astro-ph.HE]

Doré O, Bock J, Ashby M, Capak P, Cooray A, de Putter R, Eifler T, Flagey N, Gong Y, Habib S, Heitmann K, Hirata C, Jeong WS, Katti R, Korngut P, Krause E, Lee DH, Masters D, Mauskopf P, Melnick G, Mennesson B, Nguyen H, Öberg K, Pullen A, Raccanelli A, Smith R, Song YS, Tolls V, Unwin S, Venumadhav T, Viero M, Werner M, Zemcov M (2014) Cosmology with the SPHEREX all-sky spectral survey. arXiv e-prints arXiv:1412.4872 [astro-ph.CO]

Dunlop J, Peacock J, Spinrad H, Dey A, Jimenez R, Stern D, Windhorst R (1996) A 3.5-Gyr-old galaxy at redshift 1.55. Nature 381(6583):581–584. https://doi.org/10.1038/381581a0

Edelson R, Gelbord JM, Horne K, McHardy IM, Peterson BM, Arévalo P, Breeveld AA, De Rosa G, Evans PA, Goad MR, Kriss GA, Brandt WN, Gehrels N et al (2015) Space telescope and optical reverberation mapping project. II. Swift and HST reverberation mapping of the accretion disk of NGC 5548. Astrophys J 806(1):129. https://doi.org/10.1088/0004-637X/806/1/129. arXiv:1501.05951 [astro-ph.GA]

Efstathiou G (2020) A Lockdown Perspective on the Hubble Tension (with comments from the SH0ES team). arXiv e-prints arXiv:2007.10716 [astro-ph.CO]

Efstathiou G (2021) To H$$_{0}$$ or not to H$$_{0}$$? Mon Not R Astron Soc 505(3):3866–3872. https://doi.org/10.1093/mnras/stab1588. arXiv:2103.08723 [astro-ph.CO]

Eikenberry S, Gonzalez A, Darling J, Liske J, Slepian Z, Mueller G, Conklin J, Fulda P, Mendes de Oliveira C, Bentz M, Jeram S, Dong C, Townsend A, Izuti Nakazono LM, Quimby R, Welsh W (2019a) The cosmic accelerometer. In: BAAS. vol 51, p 137. arXiv:1907.08271 [astro-ph.IM]

Eikenberry S, Gonzalez A, Darling J, Slepian Z, Mueller G, Conklin J, Fulda P, Jeram S, Dong C, Townsend A (2019b) A direct measure of cosmic acceleration. BAAS 51(3):283

Eisenstein DJ, Zehavi I, Hogg DW, Scoccimarro R, Blanton MR, Nichol RC, Scranton R, Seo HJ, Tegmark M, Zheng Z, Anderson SF, Annis J, Bahcall N, Brinkmann J et al (2005) Detection of the Baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J 633(2):560–574. https://doi.org/10.1086/466512. arXiv:astro-ph/0501171 [astro-ph]

Endo T, Tashiro H, Nishizawa AJ (2020) The Alcock Paczynski test with voids in 21 cm intensity field. Mon Not R Astron Soc 499(1):587–596. https://doi.org/10.1093/mnras/staa2822. arXiv:2002.00348 [astro-ph.CO]

Esteves J, Martins CJAP, Pereira BG, Alves CS (2021) Cosmological impact of redshift drift measurements. Mon Not R Astron Soc 508(1):L53–L57. https://doi.org/10.1093/mnrasl/slab102. arXiv:2108.10739 [astro-ph.CO]

Estrada-Carpenter V, Papovich C, Momcheva I, Brammer G, Long J, Quadri RF, Bridge J, Dickinson M, Ferguson H, Finkelstein S, Giavalisco M, Gosmeyer CM, Lotz J, Salmon B, Skelton RE, Trump JR, Weiner B (2019) CLEAR. I. Ages and metallicities of quiescent galaxies at $$1.0 < \text{ z } < 1.8$$ Derived from deep hubble space telescope grism data. Astrophys J 870(2):133. https://doi.org/10.3847/1538-4357/aaf22e. arXiv:1810.02824 [astro-ph.GA]

Eulaers E, Tewes M, Magain P, Courbin F, Asfandiyarov I, Ehgamberdiev S, Rathna Kumar S, Stalin CS, Prabhu TP, Meylan G, Van Winckel H (2013) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914. Astron Astrophys 553:A121. https://doi.org/10.1051/0004-6361/201321140. arXiv:1304.4474 [astro-ph.CO]

Event Horizon Telescope Collaboration, Akiyama K, Alberdi A, Alef W, Asada K, Azulay R, Baczko AK, Ball D, Baloković M, Barrett J, Bintley D, Blackburn L, Boland W, Bouman KL, Bower GC et al (2019) First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys J Lett 875(1):L6. https://doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA]

Ezquiaga JM, Holz DE (2021) Jumping the gap: searching for LIGO’s biggest black holes. Astrophys J Lett 909(2):L23. https://doi.org/10.3847/2041-8213/abe638

Ezquiaga JM, Holz DE (2022) Spectral sirens: cosmology from the full mass distribution of compact binaries. Phys Rev Lett 129:061102. https://doi.org/10.1103/PhysRevLett.129.061102

Ezquiaga JM, Zumalacárregui M (2017) Dark energy after GW170817: dead ends and the road ahead. Phys Rev Lett 119(25):251304. https://doi.org/10.1103/PhysRevLett.119.251304

Falck B, Koyama K, Zhao GB, Cautun M (2018) Using voids to unscreen modified gravity. Mon Not R Astron Soc 475(3):3262–3272. https://doi.org/10.1093/mnras/stx3288. arXiv:1704.08942 [astro-ph.CO]

Falco EE, Gorenstein MV, Shapiro II (1985) On model-dependent bounds on H 0 from gravitational images : application to Q 0957+561 A, B. Astrophys J 289:L1–L4. https://doi.org/10.1086/184422

Fana Dirirsa F, Razzaque S, Piron F, Arimoto M, Axelsson M, Kocevski D, Longo F, Ohno M, Zhu S (2019) Spectral analysis of Fermi-LAT gamma-ray bursts with known redshift and their potential use as cosmological standard candles. Astrophys J 887(1):13. https://doi.org/10.3847/1538-4357/ab4e11. arXiv:1910.07009 [astro-ph.HE]

Fang JJ, Faber SM, Koo DC, Rodríguez-Puebla A, Guo Y, Barro G, Behroozi P, Brammer G, Chen Z, Dekel A et al (2018) Demographics of Star-forming Galaxies since z $$\sim $$ 2.5. I. The UVJ Diagram in CANDELS. Astrophys J 858(2):100. https://doi.org/10.3847/1538-4357/aabcba. arXiv:1710.05489 [astro-ph.GA]

Fang Y, Hamaus N, Jain B, Pandey S, Pollina G, Sánchez C, Kovács A, Chang C, Carretero J, Castander FJ, Choi A, Crocce M, DeRose J, Fosalba P, Gatti M, Gaztañaga E, Collaboration DES et al (2019) Dark energy survey year 1 results: the relationship between mass and light around cosmic voids. Mon Not R Astron Soc 490(3):3573–3587. https://doi.org/10.1093/mnras/stz2805. arXiv:1909.01386 [astro-ph.CO]

Farmer R, Renzo M, de Mink SE, Marchant P, Justham S (2019) Mind the gap: the location of the lower edge of the pair-instability supernova black hole mass gap. Astrophys J 887(1):53. https://doi.org/10.3847/1538-4357/ab518b. arXiv:1910.12874 [astro-ph.SR]

Farr WM, Fishbach M, Ye J, Holz DE (2019) A future percent-level measurement of the hubble expansion at redshift 0.8 with advanced LIGO. Astrophys J Lett 883(2):L42. https://doi.org/10.3847/2041-8213/ab4284. arXiv:1908.09084 [astro-ph.CO]

Fassnacht CD, Lubin LM (2002) The gravitational lens-galaxy group connection. I. Discovery of a group coincident with CLASS B0712+472. Astrophys J 123(2):627–636. https://doi.org/10.1086/338648. arXiv:astro-ph/0111205 [astro-ph]

Fassnacht CD, Xanthopoulos E, Koopmans LVE, Rusin D (2002) A determination of H$$_{0}$$ with the CLASS gravitational lens B1608+656. III. A significant improvement in the precision of the time delay measurements. Astrophys J 581(2):823–835. https://doi.org/10.1086/344368. arXiv:astro-ph/0208420 [astro-ph]

Feldman HA, Kaiser N, Peacock JA (1994) Power spectrum analysis of three-dimensional redshift surveys. Astrophys J 426:23–37. https://doi.org/10.1086/174036. arXiv:astro-ph/9304022

Fenimore EE, Ramirez-Ruiz E (2000) Redshifts for 220 BATSE gamma-ray bursts determined by variability and the cosmological consequences. arXiv e-prints astro-ph/0004176

Ferreras I, Charlot S, Silk J (1999) The age and metallicity range of early-type galaxies in clusters. Astrophys J 521(1):81–89. https://doi.org/10.1086/307513. arXiv:astro-ph/9803235 [astro-ph]

Finke A, Foffa S, Iacovelli F, Maggiore M, Mancarella M (2021) Cosmology with LIGO/virgo dark sirens: hubble parameter and modified gravitational wave propagation. arXiv e-prints arXiv:2101.12660

Firmani C, Ghisellini G, Avila-Reese V, Ghirlanda G (2006) Discovery of a tight correlation among the prompt emission properties of long gamma-ray bursts. Mon Not R Astron Soc 370(1):185–197. https://doi.org/10.1111/j.1365-2966.2006.10445.x. arXiv:astro-ph/0605073 [astro-ph]

Fishbach M, Holz DE (2017) Where are LIGO’s big black holes? Astrophys J Lett 851(2):L25. https://doi.org/10.3847/2041-8213/aa9bf6. arXiv:1709.08584 [astro-ph.HE]

Fishbach M, Gray R, Magaña Hernandez I, Qi H, Sur A, Acernese F, Aiello L, Allocca A, Aloy MA, Amato A et al (2019) A standard siren measurement of the hubble constant from GW170817 without the electromagnetic counterpart. Astrophys J Lett 871(1):L13. https://doi.org/10.3847/2041-8213/aaf96e. arXiv:1807.05667 [astro-ph.CO]

Fishbach M, Doctor Z, Callister T, Edelman B, Ye J, Essick R, Farr WM, Farr B, Holz DE (2021) When are LIGO/Virgo’s big black hole mergers? Astrophys J 912(2):98. https://doi.org/10.3847/1538-4357/abee11. arXiv:2101.07699 [astro-ph.HE]

Fitzpatrick EL (1999) Correcting for the effects of interstellar extinction. Publ Astron Soc Pac 111:63–75. https://doi.org/10.1086/316293. arXiv:astro-ph/9809387

Fixsen DJ (2009) The temperature of the cosmic microwave background. Astrophys J 707(2):916–920. https://doi.org/10.1088/0004-637X/707/2/916. arXiv:0911.1955 [astro-ph.CO]

Fleury P, Larena J, Uzan JP (2021a) Gravitational lenses in arbitrary space-times. Class Quantum Grav 38(8):085002. https://doi.org/10.1088/1361-6382/abea2d. arXiv:2011.04440 [gr-qc]

Fleury P, Larena J, Uzan JP (2021b) Line-of-sight effects in strong gravitational lensing. arXiv e-prints arXiv:2104.08883

Fohlmeister J, Kochanek CS, Falco EE, Wambsganss J, Oguri M, Dai X (2013) A two-year time delay for the lensed quasar SDSS J1029+2623. Astrophys J 764(2):186. https://doi.org/10.1088/0004-637X/764/2/186. arXiv:1207.5776 [astro-ph.CO]

Fonseca J, Camera S, Santos M, Maartens R (2015) Hunting down horizon-scale effects with multi-wavelength surveys. Astrophys J 812(2):L22. https://doi.org/10.1088/2041-8205/812/2/L22. arXiv:1507.04605 [astro-ph.CO]

Fonseca J, Maartens R, Santos MG (2017) Probing the primordial Universe with MeerKAT and DES. Mon Not R Astron Soc 466(3):2780–2786. https://doi.org/10.1093/mnras/stw3248. arXiv:1611.01322 [astro-ph.CO]

Font-Ribera A, Kirkby D, Busca N, Miralda-Escudé J, Ross NP, Slosar A, Rich J, Aubourg É, Bailey S, Bhardwaj V, Bautista J et al (2014) Quasar-Lyman $$\alpha $$ forest cross-correlation from BOSS DR11: baryon acoustic oscillations. JCAP 5:027. https://doi.org/10.1088/1475-7516/2014/05/027. arXiv:1311.1767 [astro-ph.CO]

Fontana A, Salimbeni S, Grazian A, Giallongo E, Pentericci L, Nonino M, Fontanot F, Menci N, Monaco P, Cristiani S, Vanzella E, de Santis C, Gallozzi S (2006) The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies. Astron Astrophys 459(3):745–757. https://doi.org/10.1051/0004-6361:20065475. arXiv:astro-ph/0609068 [astro-ph]

Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013) emcee: The MCMC Hammer. PASP 125(925):306. https://doi.org/10.1086/670067. arXiv:1202.3665 [astro-ph.IM]

Fowler WA, Hoyle F (1964) Neutrino processes and pair formation in massive stars and supernovae. Astrophys J Suppl 9:201. https://doi.org/10.1086/190103

Foxley-Marrable M, Collett TE, Vernardos G, Goldstein DA, Bacon D (2018) The impact of microlensing on the standardization of strongly lensed Type Ia supernovae. Mon Not R Astron Soc 478(4):5081–5090. https://doi.org/10.1093/mnras/sty1346. arXiv:1802.07738 [astro-ph.CO]

Franx M, van Dokkum PG (1996) Measuring the evolution of the M/L ratio from the fundamental plane in CL 0024+16 at $$z = 0.39$$. In: Bender R, Davies RL (eds) New light on galaxy evolution, vol 171, p 233. arXiv:astro-ph/9603029 [astro-ph]

Franx M, Labbé I, Rudnick G, van Dokkum PG, Daddi E, Förster Schreiber NM, Moorwood A, Rix HW, Röttgering H, van der Wel A, van der Werf P, van Starkenburg L (2003) A significant population of red. Near-infrared-selected high-redshift galaxies. Astrophys J Lett 587(2):L79–L82. https://doi.org/10.1086/375155. arXiv:astro-ph/0303163 [astro-ph]

Franzetti P, Scodeggio M, Garilli B, Vergani D, Maccagni D, Guzzo L, Tresse L, Ilbert O, Lamareille F, Contini T, Le Fèvre O, Zamorani G, Brinchmann J, Charlot S, Bottini D, Le Brun V et al (2007) The VIMOS-VLT deep survey. Color bimodality and the mix of galaxy populations up to z$$\sim $$2. Astron Astrophys 465(3):711–723. https://doi.org/10.1051/0004-6361:20065942. arXiv:astro-ph/0607075 [astro-ph]

Freedman WL, Madore BF, Gibson BK, Ferrarese L, Kelson DD, Sakai S, Mould JR, Kennicutt J, Robert C, Ford HC, Graham JA, Huchra JP, Hughes SMG, Illingworth GD, Macri LM, Stetson PB (2001) Final results from the hubble space telescope key project to measure the hubble constant. Astrophys J 553(1):47–72. https://doi.org/10.1086/320638. arXiv:astro-ph/0012376 [astro-ph]

Friedrich O, Halder A, Boyle A, Uhlemann C, Britt D, Codis S, Gruen D, Hahn C (2022) The PDF perspective on the tracer-matter connection: Lagrangian bias and non-Poissonian shot noise. Mon Not R Astron Soc 510(4):5069–5087. https://doi.org/10.1093/mnras/stab3703. arXiv:2107.02300 [astro-ph.CO]

Frontera F, Amati L, Guidorzi C, Landi R, in’t Zand J (2012) Broadband time-resolved E $$_{ p, i }$$-L $$_{iso}$$ correlation in gamma-ray bursts. Astrophys J 754(2):138. https://doi.org/10.1088/0004-637X/754/2/138. arXiv:1206.5626 [astro-ph.HE]

Fryer CL, Woosley SE, Heger A (2001) Pair instability supernovae, gravity waves, and gamma-ray transients. Astrophys J 550:372–382. https://doi.org/10.1086/319719. arXiv:astro-ph/0007176

Furlanetto S, Oh SP, Briggs F (2006) Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys Rep 433:181–301. https://doi.org/10.1016/j.physrep.2006.08.002. arXiv:astro-ph/0608032

Collaboration Gaia, Prusti T, de Bruijne JHJ, Brown AGA, Vallenari A, Babusiaux C, Bailer-Jones CAL, Bastian U, Biermann M, Evans DW, Eyer L, Jansen F, Jordi C, Klioner SA, Lammers U, Lindegren L, Luri X et al (2016) The Gaia mission. Astron Astrophys 595:A1. https://doi.org/10.1051/0004-6361/201629272. arXiv:1609.04153 [astro-ph.IM]

Collaboration Gaia, Klioner SA, Mignard F, Lindegren L, Bastian U, McMillan PJ, Hernández J, Hobbs D, Ramos-Lerate M, Biermann M, Bombrun A, de Torres A, Gerlach E, Geyer R, Hilger T, Lammers U, Steidelmüller H et al (2021) Gaia early data release 3. Acceleration of the solar system from Gaia astrometry. Astron Astrophys 649:A9. https://doi.org/10.1051/0004-6361/202039734. arXiv:2012.02036 [astro-ph.GA]

Gallazzi A, Charlot S, Brinchmann J, White SDM, Tremonti CA (2005) The ages and metallicities of galaxies in the local universe. Mon Not R Astron Soc 362:41–58. https://doi.org/10.1111/j.1365-2966.2005.09321.x. arXiv:astro-ph/0506539

Gallazzi A, Bell EF, Zibetti S, Brinchmann J, Kelson DD (2014) Charting the evolution of the ages and metallicities of massive galaxies since z = 0.7. Astrophys J 788(1):72. https://doi.org/10.1088/0004-637X/788/1/72. arXiv:1404.5624 [astro-ph.GA]

Garcia K, Quartin M, Siffert BB (2020) On the amount of peculiar velocity field information in supernovae from LSST and beyond. Phys Dark Univ 29:100519. https://doi.org/10.1016/j.dark.2020.100519. arXiv:1905.00746 [astro-ph.CO]

Gardner JP, Mather JC, Clampin M, Doyon R, Greenhouse MA, Hammel HB, Hutchings JB, Jakobsen P, Lilly SJ, Long KS, Lunine JI, McCaughrean MJ, Mountain M, Nella J, Rieke GH, Rieke MJ, Rix HW, Smith EP, Sonneborn G, Stiavelli M, Stockman HS, Windhorst RA, Wright GS (2006) The James webb space telescope. Space Sci Rev 123(4):485–606. https://doi.org/10.1007/s11214-006-8315-7. arXiv:astro-ph/0606175 [astro-ph]

Gavazzi G, Bonfanti C, Sanvito G, Boselli A, Scodeggio M (2002) Spectrophotometry of galaxies in the virgo cluster. I. The star formation history. Astrophys J 576(1):135–151. https://doi.org/10.1086/341730

Gehrels N, Ramirez-Ruiz E, Fox DB (2009) Gamma-ray bursts in the swift era. Annu Rev Astron Astrophys 47(1):567–617. https://doi.org/10.1146/annurev.astro.46.060407.145147. arXiv:0909.1531 [astro-ph.HE]

Ghirlanda G, Ghisellini G, Lazzati D (2004) The collimation-corrected gamma-ray burst energies correlate with the peak energy of their $$\nu $$F$$_{{\nu }}$$ spectrum. Astrophys J 616(1):331–338. https://doi.org/10.1086/424913. arXiv:astro-ph/0405602 [astro-ph]

Ghirlanda G, Ghisellini G, Firmani C (2005) Probing the existence of the E$$_{peak}$$-E$$_{iso}$$ correlation in long gamma ray bursts. Mon Not R Astron Soc 361(1):L10–L14. https://doi.org/10.1111/j.1745-3933.2005.00053.x. arXiv:astro-ph/0502186 [astro-ph]

Ghirlanda G, Nava L, Ghisellini G, Firmani C, Cabrera JI (2008) The E$$_{peak}$$-E$$_{iso}$$ plane of long gamma-ray bursts and selection effects. Mon Not R Astron Soc 387(1):319–330. https://doi.org/10.1111/j.1365-2966.2008.13232.x. arXiv:0804.1675 [astro-ph]

Ghirlanda G, Nava L, Ghisellini G (2010) Spectral-luminosity relation within individual Fermi gamma rays bursts. Astron Astrophys 511:A43. https://doi.org/10.1051/0004-6361/200913134. arXiv:0908.2807 [astro-ph.HE]

Gil-Marín H, Noreña J, Verde L, Percival WJ, Wagner C, Manera M, Schneider DP (2015) The power spectrum and bispectrum of SDSS DR11 BOSS galaxies—I. Bias and gravity. Mon Not R Astron Soc 451(1):539–580. https://doi.org/10.1093/mnras/stv961. arXiv:1407.5668 [astro-ph.CO]

Gilmore J, Natarajan P (2009) Cosmography with cluster strong lensing. Mon Not R Astron Soc 396(1):354–364. https://doi.org/10.1111/j.1365-2966.2009.14612.x. arXiv:astro-ph/0605245 [astro-ph]

Ginzburg D, Desjacques V, Chan KC (2017) Shot noise and biased tracers: a new look at the halo model. Phys Rev D 96(8):083528. https://doi.org/10.1103/PhysRevD.96.083528. arXiv:1706.08738 [astro-ph.CO]

Girelli G, Bolzonella M, Cimatti A (2019) Massive and old quiescent galaxies at high redshift. Astron Astrophys 632:A80. https://doi.org/10.1051/0004-6361/201834547. arXiv:1910.07544 [astro-ph.GA]

Goldstein DA, Nugent PE, Kasen DN, Collett TE (2018) Precise time delays from strongly gravitationally lensed Type Ia supernovae with chromatically microlensed images. Astrophys J 855(1):22. https://doi.org/10.3847/1538-4357/aaa975. arXiv:1708.00003 [astro-ph.CO]

Goldstein DA, Nugent PE, Goobar A (2019) Rates and properties of supernovae strongly gravitationally lensed by elliptical galaxies in time-domain imaging surveys. Astrophys J Suppl 243(1):6. https://doi.org/10.3847/1538-4365/ab1fe0. arXiv:1809.10147 [astro-ph.GA]

Gómez-Valent A, Amendola L (2018) H$$_{0}$$ from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. JCAP 4:051. https://doi.org/10.1088/1475-7516/2018/04/051. arXiv:1802.01505 [astro-ph.CO]

Gonzalez JE, Benetti M, von Marttens R, Alcaniz J (2021) Testing the consistency between cosmological data: the impact of spatial curvature and the dark energy EoS. arXiv e-prints arXiv:2104.13455

Goobar A, Amanullah R, Kulkarni SR, Nugent PE, Johansson J, Steidel C, Law D, Mörtsell E, Quimby R, Blagorodnova N et al (2017) iPTF16geu: a multiply imaged, gravitationally lensed type Ia supernova. Science 356(6335):291–295. https://doi.org/10.1126/science.aal2729. arXiv:1611.00014 [astro-ph.CO]

Gordon C, Land K, Slosar A (2007) Cosmological constraints from Type Ia supernovae peculiar velocity measurements. Phys Rev Lett 99:081301. https://doi.org/10.1103/PhysRevLett.99.081301. arXiv:0705.1718 [astro-ph]

Gorenstein MV, Falco EE, Shapiro II (1988) Degeneracies in parameter estimates for models of gravitational lens systems. Astrophys J 327:693. https://doi.org/10.1086/166226

Gouliermis D, Brandner W, Butler D, Hippler S (2005) Surface brightness fluctuations: a case for extremely large telescopes. In: Brandner W, Kasper ME (eds) Science with adaptive optics, p 334. https://doi.org/10.1007/10828557_57. arXiv:astro-ph/0311602 [astro-ph]

Graham MJ, Ford KES, McKernan B, Ross NP, Stern D, Burdge K, Coughlin M, Djorgovski SG, Drake AJ, Duev D et al (2020) Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g$$^{*}$$. Phys Rev Lett 124(25):251102. https://doi.org/10.1103/PhysRevLett.124.251102. arXiv:2006.14122 [astro-ph.HE]

Granata G, Mercurio A, Grillo C, Tortorelli L, Bergamini P, Meneghetti M, Rosati P, Bartosch Caminha G, Nonino M (2021) Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: the case of Abell S1063. arXiv e-prints arXiv:2107.09079

Granett BR, Neyrinck MC, Szapudi I (2008) An imprint of superstructures on the microwave background due to the integrated Sachs-Wolfe effect. Astrophys J Lett 683:L99. https://doi.org/10.1086/591670. arXiv:0805.3695

Gray R, Hernandez IM, Qi H, Sur A, Brady PR, Chen HY, Farr WM, Fishbach M, Gair JR, Ghosh A et al (2020) Cosmological inference using gravitational wave standard sirens: a mock data analysis. Phys Rev D 101(12):122001. https://doi.org/10.1103/PhysRevD.101.122001. arXiv:1908.06050 [gr-qc]

Gray R, Messenger C, Veitch J (2021) A pixelated approach to galaxy catalogue incompleteness: improving the Dark Siren measurement of the hubble constant. arXiv e-prints arXiv:2111.04629

Graziani R, Rigault M, Regnault N, Gris P, Möller A, Antilogus P, Astier P, Betoule M, Bongard S, Briday M, Cohen-Tanugi J, Copin Y, Courtois HM, Fouchez D, Gangler E, Guinet D, Hawken AJ, Kim YL, Léget PF, Neveu J, Ntelis P, Rosnet P, Nuss E (2020) Peculiar velocity cosmology with type Ia supernovae. arXiv e-prints arXiv:2001.09095

Greco JP, van Dokkum P, Danieli S, Carlsten SG, Conroy C (2021) Measuring distances to low-luminosity galaxies using surface brightness fluctuations. Astrophys J 908(1):24. https://doi.org/10.3847/1538-4357/abd030. arXiv:2004.07273 [astro-ph.GA]

Greene ZS, Suyu SH, Treu T, Hilbert S, Auger MW, Collett TE, Marshall PJ, Fassnacht CD, Blandford RD, Bradač M, Koopmans LVE (2013) Improving the precision of time-delay cosmography with observations of galaxies along the line of sight. Astrophys J 768(1):39. https://doi.org/10.1088/0004-637X/768/1/39. arXiv:1303.3588 [astro-ph.CO]

Gregory SA, Thompson LA (1978) The Coma/A1367 supercluster and its environs. Astrophys J 222:784–799. https://doi.org/10.1086/156198

Grillo C, Suyu SH, Rosati P, Mercurio A, Balestra I, Munari E, Nonino M, Caminha GB, Lombardi M, De Lucia G, Borgani S, Gobat R, Biviano A, Girardi M, Umetsu K, Coe D, Koekemoer AM, Postman M, Zitrin A, Halkola A, Broadhurst T, Sartoris B, Presotto V, Annunziatella M, Maier C, Fritz A, Vanzella E, Frye B (2015) CLASH-VLT: insights on the mass substructures in the frontier fields cluster MACS J0416.1–2403 through accurate strong lens modeling. Astrophys J 800(1):38. https://doi.org/10.1088/0004-637X/800/1/38. arXiv:1407.7866 [astro-ph.CO]

Grillo C, Karman W, Suyu SH, Rosati P, Balestra I, Mercurio A, Lombardi M, Treu T, Caminha GB, Halkola A, Rodney SA, Gavazzi R, Caputi KI (2016) The story of supernova “Refsdal” told by MUSE. Astrophys J 822(2):78. https://doi.org/10.3847/0004-637X/822/2/78. arXiv:1511.04093 [astro-ph.GA]

Grillo C, Rosati P, Suyu SH, Balestra I, Caminha GB, Halkola A, Kelly PL, Lombardi M, Mercurio A, Rodney SA, Treu T (2018a) Measuring the value of the Hubble constant “à la Refsdal”. Astrophys J 860(2):94. https://doi.org/10.3847/1538-4357/aac2c9. arXiv:1802.01584 [astro-ph.CO]

Grillo C et al (2018b) Measuring the value of the hubble constant “à la Refsdal”. Astrophys J 860(2):94. https://doi.org/10.3847/1538-4357/aac2c9. arXiv:1802.01584 [astro-ph.CO]

Grillo C, Rosati P, Suyu SH, Caminha GB, Mercurio A, Halkola A (2020) On the accuracy of time-delay cosmography in the frontier fields cluster MACS J1149.5+2223 with Supernova Refsdal. Astrophys J 898(1):87. https://doi.org/10.3847/1538-4357/ab9a4c. arXiv:2001.02232 [astro-ph.CO]

Grogin NA, Narayan R (1996) A new model of the gravitational lens 0957+561 and a limit on the hubble constant. Astrophys J 464:92. https://doi.org/10.1086/177302

Gruen D, Friedrich O, Amara A, Bacon D, Bonnett C, Hartley W, Jain B, Jarvis M, Kacprzak T, Krause E, Mana A, Rozo E, Rykoff ES et al (2016) Weak lensing by galaxy troughs in DES science verification data. Mon Not R Astron Soc 455(3):3367–3380. https://doi.org/10.1093/mnras/stv2506. arXiv:1507.05090 [astro-ph.CO]

Grupe D, Komossa S, Leighly KM, Page KL (2010) The simultaneous optical-to-X-ray spectral energy distribution of soft X-ray selected active galactic nuclei observed by swift. Astrophys J Suppl 187(1):64–106. https://doi.org/10.1088/0067-0049/187/1/64. arXiv:1001.3140 [astro-ph.CO]

Guy J, Sullivan M, Conley A, Regnault N, Astier P, Balland C, Basa S, Carlberg RG, Fouchez D, Hardin D, Hook IM, Howell DA, Pain R, Palanque-Delabrouille N, Perrett KM, Pritchet CJ, Rich J, Ruhlmann-Kleider V, Balam D, Baumont S, Ellis RS, Fabbro S, Fakhouri HK, Fourmanoit N, González-Gaitán S, Graham ML, Hsiao E, Kronborg T, Lidman C, Mourao AM, Perlmutter S, Ripoche P, Suzuki N, Walker ES (2010) The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints. Astron Astrophys 523:A7. https://doi.org/10.1051/0004-6361/201014468. arXiv:1010.4743 [astro-ph.CO]

Habouzit M, Pisani A, Goulding A, Dubois Y, Somerville RS, Greene JE (2020) Properties of simulated galaxies and supermassive black holes in cosmic voids. Mon Not R Astron Soc 493(1):899–921. https://doi.org/10.1093/mnras/staa219. arXiv:1912.06662 [astro-ph.GA]

Hall A, Bonvin C, Challinor A (2013) Testing general relativity with 21-cm intensity mapping. Phys Rev D 87(6):064026. https://doi.org/10.1103/PhysRevD.87.064026. arXiv:1212.0728 [astro-ph.CO]

Hamaus N, Seljak U, Desjacques V, Smith RE, Baldauf T (2010) Minimizing the stochasticity of halos in large-scale structure surveys. Phys Rev D 82:043515. https://doi.org/10.1103/PhysRevD.82.043515. arXiv:1004.5377 [astro-ph.CO]

Hamaus N, Sutter PM, Lavaux G, Wandelt BD (2014) Testing cosmic geometry without dynamic distortions using voids. JCAP 12:013. https://doi.org/10.1088/1475-7516/2014/12/013. arXiv:1409.3580

Hamaus N, Sutter PM, Wandelt BD (2014) Universal density profile for cosmic voids. Phys Rev Lett 112(25):251302. https://doi.org/10.1103/PhysRevLett.112.251302. arXiv:1403.5499

Hamaus N, Wandelt BD, Sutter PM, Lavaux G, Warren MS (2014) Cosmology with void-galaxy correlations. Phys Rev Lett 112(4):041304. https://doi.org/10.1103/PhysRevLett.112.041304. arXiv:1307.2571 [astro-ph.CO]

Hamaus N, Sutter PM, Lavaux G, Wandelt BD (2015) Probing cosmology and gravity with redshift-space distortions around voids. JCAP 11:036. https://doi.org/10.1088/1475-7516/2015/11/036. arXiv:1507.04363

Hamaus N, Pisani A, Sutter PM, Lavaux G, Escoffier S, Wandelt BD, Weller J (2016) Constraints on Cosmology and Gravity from the Dynamics of Voids. Phys Rev Lett 117(9):091302. https://doi.org/10.1103/PhysRevLett.117.091302. arXiv:1602.01784

Hamaus N, Cousinou MC, Pisani A, Aubert M, Escoffier S, Weller J (2017) Multipole analysis of redshift-space distortions around cosmic voids. JCAP 7:014. https://doi.org/10.1088/1475-7516/2017/07/014. arXiv:1705.05328

Hamaus N, Pisani A, Choi JA, Lavaux G, Wandelt BD, Weller J (2020) Precision cosmology with voids in the final BOSS data. JCAP 12:023. https://doi.org/10.1088/1475-7516/2020/12/023. arXiv:2007.07895 [astro-ph.CO]

Hamaus N, Aubert M, Pisani A, Contarini S, Verza G, Cousinou MC, Escoffier S, Hawken A et al (2022) Euclid: Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids. Astron Astrophys 658:A20. https://doi.org/10.1051/0004-6361/202142073. arXiv:2108.10347 [astro-ph.CO]

Haridasu BS, Luković VV, Moresco M, Vittorio N (2018) An improved model-independent assessment of the late-time cosmic expansion. JCAP 10:015. https://doi.org/10.1088/1475-7516/2018/10/015. arXiv:1805.03595 [astro-ph.CO]

Harper S, Dickinson C (2018) Potential impact of global navigation satellite services on total power HI intensity mapping surveys. Mon Not R Astron Soc 479(2):2024–2036. https://doi.org/10.1093/mnras/sty1495. arXiv:1803.06314 [astro-ph.IM]

Harper S, Dickinson C, Battye R, Roychowdhury S, Browne I, Ma YZ, Olivari L, Chen T (2018) Impact of simulated 1/f noise for HI intensity mapping experiments. Mon Not R Astron Soc 478(2):2416–2437. https://doi.org/10.1093/mnras/sty1238. arXiv:1711.07843 [astro-ph.CO]

Haselgrove CB, Hoyle F (1956) A preliminary determination of the age of type II stars. Mon Not R Astron Soc 116:527. https://doi.org/10.1093/mnras/116.5.527

Hawken AJ, Granett BR, Iovino A, Guzzo L, Peacock JA, de la Torre S, Garilli B, Bolzonella M, Scodeggio M, Abbas U, Adami C et al (2017) The VIMOS Public Extragalactic Redshift Survey. Measuring the growth rate of structure around cosmic voids. Astron Astrophys 607:A54. https://doi.org/10.1051/0004-6361/201629678. arXiv:1611.07046 [astro-ph.CO]

Hawken AJ, Aubert M, Pisani A, Cousinou MC, Escoffier S, Nadathur S, Rossi G, Schneider DP (2020) Constraints on the growth of structure around cosmic voids in eBOSS DR14. JCAP 6:012. https://doi.org/10.1088/1475-7516/2020/06/012. arXiv:1909.04394 [astro-ph.CO]

Heavens A, Panter B, Jimenez R, Dunlop J (2004) The star-formation history of the Universe from the stellar populations of nearby galaxies. Nature 428(6983):625–627. https://doi.org/10.1038/nature02474. arXiv:astro-ph/0403293 [astro-ph]

Heavens AF, Jimenez R, Lahav O (2000) Massive lossless data compression and multiple parameter estimation from galaxy spectra. Mon Not R Astron Soc 317(4):965–972. https://doi.org/10.1046/j.1365-8711.2000.03692.x. arXiv:astro-ph/9911102 [astro-ph]

Heger A, Woosley SE (2002) The nucleosynthetic signature of population III. Astrophys J 567:532–543. https://doi.org/10.1086/338487. arXiv:astro-ph/0107037

Heinesen A (2021) Redshift drift as a model independent probe of dark energy. Phys Rev D 103(8):L081302. https://doi.org/10.1103/PhysRevD.103.L081302. arXiv:2102.03774 [gr-qc]

Heneka C, Amendola L (2018) General modified gravity with 21cm intensity mapping: simulations and forecast. JCAP 10:004. https://doi.org/10.1088/1475-7516/2018/10/004. arXiv:1805.03629 [astro-ph.CO]

Hennawi JF, Dalal N, Bode P, Ostriker JP (2007) Characterizing the cluster lens population. Astrophys J 654(2):714–730. https://doi.org/10.1086/497362. arXiv:astro-ph/0506171 [astro-ph]

Hennawi JF, Gladders MD, Oguri M, Dalal N, Koester B, Natarajan P, Strauss MA, Inada N, Kayo I, Lin H, Lampeitl H, Annis J, Bahcall NA, Schneider DP (2008) A new survey for giant arcs. Astrophys J 135(2):664–681. https://doi.org/10.1088/0004-6256/135/2/664. arXiv:astro-ph/0610061 [astro-ph]

Heymans C, Grocutt E, Heavens A, Kilbinger M, Kitching TD, Simpson F, Benjamin J, Erben T, Hildebrandt H, Hoekstra H, Mellier Y, Miller L, Van Waerbeke L, Brown ML, Coupon J, Fu L, Harnois-Déraps J, Hudson MJ, Kuijken K, Rowe B, Schrabback T, Semboloni E, Vafaei S, Velander M (2013) CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. Mon Not R Astron Soc 432(3):2433–2453. https://doi.org/10.1093/mnras/stt601. arXiv:1303.1808 [astro-ph.CO]

Heymans C, Tröster T, Asgari M, Blake C, Hildebrandt H, Joachimi B, Kuijken K, Lin CA, Sánchez AG, van den Busch JL, Wright AH, Amon A, Bilicki M et al (2021) KiDS-1000 Cosmology: multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astron Astrophys 646:A140. https://doi.org/10.1051/0004-6361/202039063. arXiv:2007.15632 [astro-ph.CO]

Hildebrandt H, Viola M, Heymans C, Joudaki S, Kuijken K, Blake C, Erben T, Joachimi B, Klaes D, Miller L, Morrison CB, Nakajima R, Verdoes Kleijn G, Amon A, Choi A, Covone G et al (2017) KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing. Mon Not R Astron Soc 465(2):1454–1498. https://doi.org/10.1093/mnras/stw2805. arXiv:1606.05338 [astro-ph.CO]

Hirata CM, Holz DE, Cutler C (2010) Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution. Phys Rev D 81(12):124046. https://doi.org/10.1103/PhysRevD.81.124046. arXiv:1004.3988 [astro-ph.CO]

Hojjati A, Kim AG, Linder EV (2013) Robust strong lensing time delay estimation. Phys Rev D 87(12):123512. https://doi.org/10.1103/PhysRevD.87.123512. arXiv:1304.0309 [astro-ph.CO]

Holanda RFL, Carvalho JC, Alcaniz JS (2013) Model-independent constraints on the cosmic opacity. JCAP 4:027. https://doi.org/10.1088/1475-7516/2013/04/027. arXiv:1207.1694 [astro-ph.CO]

Holz DE, Hughes SA (2005) Using gravitational-wave standard sirens. Astrophys J 629(1):15–22. https://doi.org/10.1086/431341. arXiv:astro-ph/0504616 [astro-ph]

Hothi I et al (2020) Comparing foreground removal techniques for recovery of the LOFAR-EoR 21 cm power spectrum. Mon Not R Astron Soc 500(2):2264–2277. https://doi.org/10.1093/mnras/staa3446. arXiv:2011.01284 [astro-ph.CO]

Hotinli SC, Meyers J, Dalal N, Jaffe AH, Johnson MC, Mertens JB, Münchmeyer M, Smith KM, van Engelen A (2019) Transverse velocities with the moving lens effect. Phys Rev Lett 123(6):061301. https://doi.org/10.1103/PhysRevLett.123.061301. arXiv:1812.03167 [astro-ph.CO]

Hou J, Sánchez AG, Ross AJ, Smith A, Neveux R, Bautista J, Burtin E, Zhao C, Scoccimarro R, Dawson KS, de Mattia A et al (2021) The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from anisotropic clustering analysis of the quasar sample in configuration space between redshift 0.8 and 2.2. Mon Not R Astron Soc 500(1):1201–1221. https://doi.org/10.1093/mnras/staa3234. arXiv:2007.08998 [astro-ph.CO]

Howlett C (2019) The redshift-space momentum power spectrum—I. Optimal estimation from peculiar velocity surveys. Mon Not R Astron Soc 487(4):5209–5234. https://doi.org/10.1093/mnras/stz1403. arXiv:1906.02875 [astro-ph.CO]

Howlett C, Robotham ASG, Lagos CDP, Kim AG (2017) Measuring the growth rate of structure with Type Ia Supernovae from LSST. Astrophys J 847(2):128. https://doi.org/10.3847/1538-4357/aa88c8. arXiv:1708.08236 [astro-ph.CO]

Hoyle F, Rojas RR, Vogeley MS, Brinkmann J (2005) The luminosity function of void galaxies in the sloan digital sky survey. Astrophys J 620(2):618–628. https://doi.org/10.1086/427176. arXiv:astro-ph/0309728 [astro-ph]

Hu W, Wang X, Wu F, Wang Y, Zhang P, Chen X (2020) Forecast for FAST: from Galaxies Survey to Intensity Mapping. Mon Not R Astron Soc 493(4):5854–5870. https://doi.org/10.1093/mnras/staa650. arXiv:1909.10946 [astro-ph.CO]

Hu JP, Wang FY, Dai ZG (2021) Measuring cosmological parameters with a luminosity-time correlation of gamma-ray bursts. Mon Not R Astron Soc 507(1):730–742. https://doi.org/10.1093/mnras/stab2180. arXiv:2107.12718 [astro-ph.CO]

Huang X, Storfer C, Ravi V, Pilon A, Domingo M, Schlegel DJ, Bailey S, Dey A, Gupta RR, Herrera D, Juneau S, Landriau M, Lang D, Meisner A, Moustakas J, Myers AD, Schlafly EF, Valdes F, Weaver BA, Yang J, Yèche C (2020) Finding strong gravitational lenses in the DESI DECam legacy survey. Astrophys J 894(1):78. https://doi.org/10.3847/1538-4357/ab7ffb. arXiv:1906.00970 [astro-ph.GA]

Huang Y, Haster CJ, Vitale S, Varma V, Foucart F, Biscoveanu S (2021) Statistical and systematic uncertainties in extracting the source properties of neutron star-black hole binaries with gravitational waves. Phys Rev D 103(8):083001. https://doi.org/10.1103/PhysRevD.103.083001. arXiv:2005.11850 [gr-qc]

Huber S, Suyu SH, Noebauer UM, Chan JHH, Kromer M, Sim SA, Sluse D, Taubenberger S (2021) HOLISMOKES. III. Achromatic phase of strongly lensed Type Ia supernovae. Astron Astrophys 646:A110. https://doi.org/10.1051/0004-6361/202039218. arXiv:2008.10393 [astro-ph.HE]

Hui L, Greene PB (2006) Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys Rev D 73(12):123526. https://doi.org/10.1103/PhysRevD.73.123526. arXiv:astro-ph/0512159

Huterer D, Shafer DL (2018) Dark energy two decades after: observables, probes, consistency tests. Rep Progr Phys 81(1):016901. https://doi.org/10.1088/1361-6633/aa997e. arXiv:1709.01091 [astro-ph.CO]

Huterer D, Shafer D, Scolnic D, Schmidt F (2017) Testing $$\Lambda $$CDM at the lowest redshifts with SN Ia and galaxy velocities. JCAP 1705(05):015. https://doi.org/10.1088/1475-7516/2017/05/015. arXiv:1611.09862 [astro-ph.CO]

Icke V (1984) Voids and filaments. Mon Not R Astron Soc 206:1P-3P. https://doi.org/10.1093/mnras/206.1.1P

Ilbert O, Lauger S, Tresse L, Buat V, Arnouts S, Le Fèvre O, Burgarella D, Zucca E, Bardelli S, Zamorani G, Bottini D, Garilli B, Le Brun V, Maccagni D, Picat JP, Scaramella R, Scodeggio M et al (2006) The VIMOS-VLT Deep Survey. Galaxy luminosity function per morphological type up to z = 1.2. Astron Astrophys 453(3):809–815. https://doi.org/10.1051/0004-6361:20053632. arXiv:astro-ph/0604010 [astro-ph]

Ilbert O, Capak P, Salvato M, Aussel H, McCracken HJ, Sanders DB, Scoville N, Kartaltepe J, Arnouts S, Le Floc’h E, Mobasher B, Taniguchi Y, Lamareille F, Leauthaud A, Sasaki S, Thompson D, Zamojski M, Zamorani G, Bardelli S et al (2009) Cosmos photometric redshifts with 30-bands for 2-deg$$^{2}$$. Astrophys J 690(2):1236–1249. https://doi.org/10.1088/0004-637X/690/2/1236. arXiv:0809.2101 [astro-ph]

Ilbert O, Salvato M, Le Floc’h E, Aussel H, Capak P, McCracken HJ, Mobasher B, Kartaltepe J, Scoville N, Sanders DB, Arnouts S, Bundy K, Cassata P, Kneib JP, Koekemoer A, Le Fèvre O, Lilly S, Surace J, Taniguchi Y, Tasca L, Thompson D, Tresse L, Zamojski M, Zamorani G, Zucca E (2010) Galaxy Stellar mass assembly between $$0.2 < z < 2$$ from the S-COSMOS Survey. Astrophys J 709(2):644–663. https://doi.org/10.1088/0004-637X/709/2/644. arXiv:0903.0102 [astro-ph.CO]

Ilbert O, McCracken HJ, Le Fèvre O, Capak P, Dunlop J, Karim A, Renzini MA, Caputi K, Boissier S, Arnouts S, Aussel H, Comparat J, Guo Q, Hudelot P, Kartaltepe J, Kneib JP, Krogager JK, Le Floc’h E, Lilly S, Mellier Y et al (2013) Mass assembly in quiescent and star-forming galaxies since $$z\simeq 4$$ from UltraVISTA. Astron Astrophys 556:A55. https://doi.org/10.1051/0004-6361/201321100. arXiv:1301.3157 [astro-ph.CO]

Ilić S, Langer M, Douspis M (2013) Detecting the integrated Sachs-Wolfe effect with stacked voids. Astron Astrophys 556:A51. https://doi.org/10.1051/0004-6361/201321150. arXiv:1301.5849 [astro-ph.CO]

Inada N, Oguri M, Pindor B, Hennawi JF, Chiu K, Zheng W, Ichikawa SI, Gregg MD, Becker RH, Suto Y, Strauss MA, Turner EL et al (2003) A gravitationally lensed quasar with quadruple images separated by 14.62arcseconds. Nature 426(6968):810–812. https://doi.org/10.1038/nature02153. arXiv:astro-ph/0312427 [astro-ph]

Inada N, Oguri M, Morokuma T, Doi M, Yasuda N, Becker RH, Richards GT, Kochanek CS, Kayo I, Konishi K, Utsunomiya H, Shin MS, Strauss MA, Sheldon ES, York DG, Hennawi JF, Schneider DP, Dai X, Fukugita M (2006) SDSS J1029+2623: a gravitationally lensed quasar with an image separation of 22.5. Astrophys J Lett 653(2):L97–L100. https://doi.org/10.1086/510671. arXiv:astro-ph/0611275 [astro-ph]

Irfan MO, Bull P (2021) Cleaning foregrounds from single-dish 21 cm intensity maps with Kernel principal component analysis. Mon Not R Astron Soc 508(3):3551–3568. https://doi.org/10.1093/mnras/stab2855. arXiv:2107.02267 [astro-ph.CO]

Ishida EEO et al (2019) Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning. Mon Not R Astron Soc 483(1):2–18. https://doi.org/10.1093/mnras/sty3015. arXiv:1804.03765 [astro-ph.IM]

Ivanov MM, Simonović M, Zaldarriaga M (2020) Cosmological parameters from the BOSS galaxy power spectrum. JCAP 05:042. https://doi.org/10.1088/1475-7516/2020/05/042. arXiv:1909.05277 [astro-ph.CO]

Izzo L, Muccino M, Zaninoni E, Amati L, Della Valle M (2015) New measurements of $$\Omega $$$$_{m}$$ from gamma-ray bursts. Astron Astrophys 582:A115. https://doi.org/10.1051/0004-6361/201526461. arXiv:1508.05898 [astro-ph.CO]

Jõeveer M, Einasto J, Tago E (1978) Spatial distribution of galaxies and of clusters of galaxies in the southern galactic hemisphere. Mon Not R Astron Soc 185:357–370. https://doi.org/10.1093/mnras/185.2.357

Jackson JC (1972) A critique of Rees’s theory of primordial gravitational radiation. Mon Not R Astron Soc 156:1P. https://doi.org/10.1093/mnras/156.1.1P. arXiv:0810.3908 [astro-ph]

Jalilvand M, Majerotto E, Durrer R, Kunz M (2019) Intensity mapping of the 21 cm emission: lensing. JCAP 01:020. https://doi.org/10.1088/1475-7516/2019/01/020. arXiv:1807.01351 [astro-ph.CO]

Jaroszynski M (2019) Fast radio bursts and cosmological tests. Mon Not R Astron Soc 484(2):1637–1644. https://doi.org/10.1093/mnras/sty3529. arXiv:1812.11936 [astro-ph.CO]

Jee I, Komatsu E, Suyu SH (2015) Measuring angular diameter distances of strong gravitational lenses. JCAP 11:033. https://doi.org/10.1088/1475-7516/2015/11/033. arXiv:1410.7770 [astro-ph.CO]

Jeffrey N, Gatti M, Chang C, Whiteway L, Demirbozan U, Kovacs A, Pollina G, Bacon D, Hamaus N, Kacprzak T, Lahav O, Lanusse F, Collaboration DES et al (2021) Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction. Mon Not R Astron Soc 505(3):4626–4645. https://doi.org/10.1093/mnras/stab1495. arXiv:2105.13539 [astro-ph.CO]

Jennings E, Li Y, Hu W (2013) The abundance of voids and the excursion set formalism. Mon Not R Astron Soc 434:2167–2181. https://doi.org/10.1093/mnras/stt1169. arXiv:1304.6087

Jensen JB (2012) Surface brightness fluctuation PSF fitting techniques with natural guide star adaptive optics. In: American Astronomical Society Meeting Abstracts #220. American Astronomical Society Meeting Abstracts, vol 220, p 332.01

Jensen JB, Tonry JL, Luppino GA (1998) Measuring distances using infrared surface brightness fluctuations. Astrophys J 505(1):111–128. https://doi.org/10.1086/306163. arXiv:astro-ph/9804169 [astro-ph]

Jensen JB, Tonry JL, Thompson RI, Ajhar EA, Lauer TR, Rieke MJ, Postman M, Liu MC (2001) The infrared surface brightness fluctuation hubble constant. Astrophys J 550:503–521. https://doi.org/10.1086/319819

Jensen JB, Tonry JL, Barris BJ, Thompson RI, Liu MC, Rieke MJ, Ajhar EA, Blakeslee JP (2003) Measuring distances and probing the unresolved stellar populations of galaxies using infrared surface brightness fluctuations. Astrophys J 583:712–726. https://doi.org/10.1086/345430

Jensen JB, Blakeslee JP, Gibson Z, Hc Lee, Cantiello M, Raimondo G, Boyer N, Cho H (2015) Measuring infrared surface brightness fluctuation distances with HST WFC3: calibration and advice. Astrophys J 808:91. https://doi.org/10.1088/0004-637X/808/1/91. arXiv:1505.00400

Jensen JB, Blakeslee JP, Ma CP, Milne PA, Brown PJ, Cantiello M, Garnavich PM, Greene JE, Lucey JR, Phan A, Tully RB, Wood CM (2021) Infrared surface brightness fluctuation distances for MASSIVE and Type Ia supernova host galaxies. Astrophys J Suppl 255(2):21. https://doi.org/10.3847/1538-4365/ac01e7. arXiv:2105.08299 [astro-ph.CO]

Jiao K, Zhang JC, Zhang TJ, Yu HR, Zhu M, Li D (2020) Toward a direct measurement of the cosmic acceleration: roadmap and forecast on FAST. JCAP 1:054. https://doi.org/10.1088/1475-7516/2020/01/054. arXiv:1905.01184 [astro-ph.CO]

Jimenez R, Loeb A (2002) Constraining cosmological parameters based on relative galaxy ages. Astrophys J 573:37–42. https://doi.org/10.1086/340549. arXiv:astro-ph/0106145 [astro-ph]

Jimenez R, Padoan P (1996) A new self-consistency check on the ages of globular clusters. Astrophys J Lett 463:L17. https://doi.org/10.1086/310053

Jimenez R, Padoan P (1998) The ages and distances of globular clusters with the luminosity function method: the case of M5 and M55. Astrophys J 498(2):704–709. https://doi.org/10.1086/305593. arXiv:astro-ph/9701141 [astro-ph]

Jimenez R, Thejll P, Jorgensen UG, MacDonald J, Pagel B (1996) Ages of globular clusters: a new approach. Mon Not R Astron Soc 282(3):926–942. https://doi.org/10.1093/mnras/282.3.926. arXiv:astro-ph/9602132 [astro-ph]

Jimenez R, Verde L, Treu T, Stern D (2003) Constraints on the equation of state of dark energy and the hubble constant from stellar ages and the cosmic microwave background. Astrophys J 593:622–629. https://doi.org/10.1086/376595. arXiv:astro-ph/0302560

Jimenez R, MacDonald J, Dunlop JS, Padoan P, Peacock JA (2004) Synthetic stellar populations: single stellar populations, stellar interior models and primordial protogalaxies. Mon Not R Astron Soc 349(1):240–254. https://doi.org/10.1111/j.1365-2966.2004.07492.x. arXiv:astro-ph/0402271 [astro-ph]

Jimenez R, Cimatti A, Verde L, Moresco M, Wandelt B (2019) The local and distant Universe: stellar ages and H$$_{0}$$. JCAP 3:043. https://doi.org/10.1088/1475-7516/2019/03/043. arXiv:1902.07081 [astro-ph.CO]

Joudaki S, Blake C, Heymans C, Choi A, Harnois-Deraps J, Hildebrandt H, Joachimi B, Johnson A, Mead A, Parkinson D, Viola M, van Waerbeke L (2017) CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics. Mon Not R Astron Soc 465(2):2033–2052. https://doi.org/10.1093/mnras/stw2665. arXiv:1601.05786 [astro-ph.CO]

Joudaki S, Hildebrandt H, Traykova D, Chisari NE, Heymans C, Kannawadi A, Kuijken K, Wright AH, Asgari M, Erben T, Hoekstra H, Joachimi B, Miller L, Tröster T, van den Busch JL (2020) KiDS+VIKING-450 and DES-Y1 combined: cosmology with cosmic shear. Astron Astrophys 638:L1. https://doi.org/10.1051/0004-6361/201936154. arXiv:1906.09262 [astro-ph.CO]

Jullo E, Kneib JP (2009) Multiscale cluster lens mass mapping—I. Strong lensing modelling. Mon Not R Astron Soc 395(3):1319–1332. https://doi.org/10.1111/j.1365-2966.2009.14654.x. arXiv:0901.3792 [astro-ph.CO]

Jullo E, Kneib JP, Limousin M, Elíasdóttir Á, Marshall PJ, Verdugo T (2007) A Bayesian approach to strong lensing modelling of galaxy clusters. New J Phys 9(12):447. https://doi.org/10.1088/1367-2630/9/12/447. arXiv:0706.0048 [astro-ph]

Jullo E, Natarajan P, Kneib JP, D’Aloisio A, Limousin M, Richard J, Schimd C (2010) Cosmological constraints from strong gravitational lensing in clusters of galaxies. Science 329:924–927. https://doi.org/10.1126/science.1185759. arXiv:1008.4802 [astro-ph.CO]

Kaiser N (1984) On the spatial correlations of Abell clusters. Astrophys J Lett 284:L9–L12. https://doi.org/10.1086/184341

Kaiser N (1987) Clustering in real space and in redshift space. Mon Not R Astron Soc 227:1–27

Karagiannis D, Slosar A, Liguori M (2020) Forecasts on primordial non-Gaussianity from 21 cm intensity mapping experiments. JCAP 11:052. https://doi.org/10.1088/1475-7516/2020/11/052. arXiv:1911.03964 [astro-ph.CO]

Karagiannis D, Fonseca J, Maartens R, Camera S (2021) Probing primordial non-Gaussianity with the power spectrum and bispectrum of future 21 cm intensity maps. Phys Dark Univ 32:100821. https://doi.org/10.1016/j.dark.2021.100821. arXiv:2010.07034 [astro-ph.CO]

Kelly BC (2007) Some aspects of measurement error in linear regression of astronomical data. Astrophys J 665(2):1489–1506. https://doi.org/10.1086/519947. arXiv:0705.2774 [astro-ph]

Kelly PL, Rodney SA, Treu T, Foley RJ, Brammer G, Schmidt KB, Zitrin A, Sonnenfeld A, Strolger LG, Graur O, Filippenko AV, Jha SW, Riess AG, Bradac M, Weiner BJ, Scolnic D, Malkan MA, von der Linden A, Trenti M, Hjorth J, Gavazzi R, Fontana A, Merten JC, McCully C, Jones T, Postman M, Dressler A, Patel B, Cenko SB, Graham ML, Tucker BE (2015) Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science 347(6226):1123–1126. https://doi.org/10.1126/science.aaa3350. arXiv:1411.6009 [astro-ph.CO]

Kennicutt J, Robert C (1998) Star formation in galaxies along the Hubble sequence. Annu Rev Astron Astrophys 36:189–232. https://doi.org/10.1146/annurev.astro.36.1.189. arXiv:astro-ph/9807187

Kessler R, Becker A, Cinabro D, Vanderplas J, Frieman JA et al (2009) First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova results: hubble diagram and cosmological parameters. Astrophys J Suppl 185:32–84. https://doi.org/10.1088/0067-0049/185/1/32. arXiv:0908.4274 [astro-ph.CO]

Khadka N, Ratra B (2020a) Constraints on cosmological parameters from gamma-ray burst peak photon energy and bolometric fluence measurements and other data. Mon Not R Astron Soc 499(1):391–403. https://doi.org/10.1093/mnras/staa2779. arXiv:2007.13907 [astro-ph.CO]

Khadka N, Ratra B (2020b) Quasar X-ray and UV flux, baryon acoustic oscillation, and Hubble parameter measurement constraints on cosmological model parameters. Mon Not R Astron Soc 492(3):4456–4468. https://doi.org/10.1093/mnras/staa101. arXiv:1909.01400 [astro-ph.CO]

Khadka N, Ratra B (2020c) Using quasar X-ray and UV flux measurements to constrain cosmological model parameters. Mon Not R Astron Soc 497(1):263–278. https://doi.org/10.1093/mnras/staa1855. arXiv:2004.09979 [astro-ph.CO]

Khadka N, Ratra B (2021) Determining the range of validity of quasar X-ray and UV flux measurements for constraining cosmological model parameters. Mon Not R Astron Soc 502(4):6140–6156. https://doi.org/10.1093/mnras/stab486. arXiv:2012.09291 [astro-ph.CO]

Khadka N, Luongo O, Muccino M, Ratra B (2021) Do gamma-ray burst measurements provide a useful test of cosmological models? JCAP 9:042. https://doi.org/10.1088/1475-7516/2021/09/042. arXiv:2105.12692 [astro-ph.CO]

Khetan N, Izzo L, Branchesi M, Wojtak R, Cantiello M, Murugeshan C, Agnello A, Cappellaro E, Della Valle M, Gall C, Hjorth J, Benetti S, Brocato E, Burke J, Hiramatsu D, Howell DA, Tomasella L, Valenti S (2021) A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations. Astron Astrophys 647:A72. https://doi.org/10.1051/0004-6361/202039196. arXiv:2008.07754 [astro-ph.CO]

Kim AG, Linder EV, Edelstein J, Erskine D (2015) Giving cosmic redshift drift a whirl. Astropart Phys 62:195–205. https://doi.org/10.1016/j.astropartphys.2014.09.004

Kitaura FS, Chuang CH, Liang Y, Zhao C, Tao C, Rodríguez-Torres S, Eisenstein DJ, Gil-Marín H, Kneib JP, McBride C, Percival WJ, Ross AJ, Sánchez AG, Tinker J, Tojeiro R, Vargas-Magana M, Zhao GB (2016) Signatures of the primordial universe from its emptiness: measurement of baryon acoustic oscillations from minima of the density field. Phys Rev Lett 116(17):171301. https://doi.org/10.1103/PhysRevLett.116.171301. arXiv:1511.04405

Kloeckner HR, Obreschkow D, Martins C, Raccanelli A, Champion D, Roy AL, Lobanov A, Wagner J, Keller R (2015) Real time cosmology—a direct measure of the expansion rate of the Universe with the SKA. In: Advancing Astrophysics with the Square Kilometre Array (AASKA14), p 27. arXiv:1501.03822 [astro-ph.CO]

Klypin A, Yepes G, Gottlober S, Prada F, Hess S (2016) MultiDark simulations: the story of dark matter halo concentrations and density profiles. Mon Not R Astron Soc 457(4):4340–4359. https://doi.org/10.1093/mnras/stw248. arXiv:1411.4001 [astro-ph.CO]

Knebe A et al (2018) MultiDark-Galaxies: data release and first results. Mon Not R Astron Soc 474(4):5206–5231. https://doi.org/10.1093/mnras/stx2662. arXiv:1710.08150 [astro-ph.GA]

Kneib JP, Ellis RS, Smail I, Couch WJ, Sharples RM (1996) Hubble space telescope observations of the lensing cluster Abell 2218. Astrophys J 471:643. https://doi.org/10.1086/177995. arXiv:astro-ph/9511015 [astro-ph]

Kochanek CS (2002) What do gravitational lens time delays measure? Astrophys J 578(1):25–32. https://doi.org/10.1086/342476. arXiv:astro-ph/0205319 [astro-ph]

Kochanek CS (2020) Overconstrained gravitational lens models and the Hubble constant. Mon Not R Astron Soc 493(2):1725–1735. https://doi.org/10.1093/mnras/staa344. arXiv:1911.05083 [astro-ph.CO]

Kochanek CS (2021) Overconstrained models of time delay lenses redux: how the angular tail wags the radial dog. Mon Not R Astron Soc 501(4):5021–5028. https://doi.org/10.1093/mnras/staa4033. arXiv:2003.08395 [astro-ph.CO]

Koda J, Blake C, Davis T, Magoulas C, Springob CM, Scrimgeour M, Johnson A, Poole GB, Staveley-Smith L (2014) Are peculiar velocity surveys competitive as a cosmological probe? Mon Not R Astron Soc 445(4):4267–4286. https://doi.org/10.1093/mnras/stu1610. arXiv:1312.1022 [astro-ph.CO]

Kodama Y, Yonetoku D, Murakami T, Tanabe S, Tsutsui R, Nakamura T (2008) Gamma-ray bursts in $$1.8 < z < 5.6$$ suggest that the time variation of the dark energy is small. Mon Not R Astron Soc 391(1):L1–L4. https://doi.org/10.1111/j.1745-3933.2008.00508.x. arXiv:0802.3428 [astro-ph]

Koksbang SM (2021) Searching for signals of inhomogeneity using multiple probes of the cosmic expansion rate H(z). Phys Rev Lett 126(23):231101. https://doi.org/10.1103/PhysRevLett.126.231101. arXiv:2105.11880 [astro-ph.CO]

Kolatt TS, Bartelmann M (1998) Gravitational lensing of type Ia supernovae by galaxy clusters. Mon Not R Astron Soc 296(3):763–772. https://doi.org/10.1046/j.1365-8711.1998.01466.x. arXiv:astro-ph/9708120 [astro-ph]

Koleva M, Prugniel P, Bouchard A, Wu Y (2009) ULySS: a full spectrum fitting package. Astron Astrophys 501(3):1269–1279. https://doi.org/10.1051/0004-6361/200811467. arXiv:0903.2979 [astro-ph.IM]

Koopmans LVE, Treu T, Fassnacht CD, Blandford RD, Surpi G (2003) The Hubble constant from the gravitational lens B1608+656. Astrophys J 599(1):70–85. https://doi.org/10.1086/379226. arXiv:astro-ph/0306216 [astro-ph]

Kouveliotou C, Meegan CA, Fishman GJ, Bhat NP, Briggs MS, Koshut TM, Paciesas WS, Pendleton GN (1993) Identification of two classes of gamma-ray bursts. Astrophys J Lett 413:L101. https://doi.org/10.1086/186969

Kovács A, Sánchez C, García-Bellido J, Elvin-Poole J, Hamaus N, Miranda V, Nadathur S, Abbott T, Abdalla FB, Annis J, Avila S, Collaboration DES et al (2019) More out of less: an excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy Survey. Mon Not R Astron Soc 484(4):5267–5277. https://doi.org/10.1093/mnras/stz341. arXiv:1811.07812 [astro-ph.CO]

Kovács A, Beck R, Smith A, Rácz G, Csabai I, Szapudi I (2022) Evidence for a high-$$z$$ ISW signal from supervoids in the distribution of eBOSS quasars. Mon Not R Astron Soc 513(1):15–26. https://doi.org/10.1093/mnras/stac903. arXiv:2107.13038 [astro-ph.CO]

Kovetz ED et al (2020) Astrophysics and cosmology with line-intensity mapping. Bull Am Astron Soc 51(3):101 arXiv:1903.04496 [astro-ph.CO]

Kreckel K, Platen E, Aragón-Calvo MA, van Gorkom JH, van de Weygaert R, van der Hulst JM, Beygu B (2012) The void galaxy survey: optical properties and H I morphology and kinematics. AJ 144(1):16. https://doi.org/10.1088/0004-6256/144/1/16. arXiv:1204.5185 [astro-ph.CO]

Kreisch CD, Pisani A, Carbone C, Liu J, Hawken AJ, Massara E, Spergel DN, Wandelt BD (2019) Massive neutrinos leave fingerprints on cosmic voids. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz1944. arXiv:1808.07464 [astro-ph.CO]

Kreisch CD, Pisani A, Villaescusa-Navarro F, Spergel DN, Wandelt BD, Hamaus N, Bayer AE (2022) The GIGANTES data set: precision cosmology from voids in the machine-learning Era. Astrophys J 935(2):100. https://doi.org/10.3847/1538-4357/ac7d4b. arXiv:2107.02304 [astro-ph.CO]

Kriek M, Price SH, Conroy C, Suess KA, Mowla L, Pasha I, Bezanson R, van Dokkum P, Barro G (2019) Stellar metallicities and elemental abundance ratios of $$z\sim 1.4$$ massive quiescent galaxies. Astrophys J Lett 880(2):L31. https://doi.org/10.3847/2041-8213/ab2e75. arXiv:1907.04327 [astro-ph.GA]

Krishnan C, Colgáin EÓ, Sen Ruchika AA, Sheikh-Jabbari MM, Yang T (2020) Is there an early Universe solution to Hubble tension? Phys Rev D 102(10):103525. https://doi.org/10.1103/PhysRevD.102.103525. arXiv:2002.06044 [astro-ph.CO]

Krishnan C, Ó Colgáin E, Sheikh-Jabbari MM, Yang T (2021) Running Hubble tension and a H0 diagnostic. Phys Rev D 103(10):103509. https://doi.org/10.1103/PhysRevD.103.103509. arXiv:2011.02858 [astro-ph.CO]

Krolewski A, Lee KG, White M, Hennawi JF, Schlegel DJ, Nugent PE, Lukić Z, Stark CW, Koekemoer AM, Le Fèvre O, Lemaux BC, Maier C, Rich RM, Salvato M, Tasca L (2018) Detection of z $$\sim $$ 2.3 cosmic voids from 3D Ly$$\alpha $$ forest tomography in the COSMOS field. Astrophys J 861(1):60. https://doi.org/10.3847/1538-4357/aac829. arXiv:1710.02612 [astro-ph.CO]

Krone-Martins A, Delchambre L, Wertz O, Ducourant C, Mignard F, Teixeira R, Klüter J, Le Campion JF, Galluccio L, Surdej J, Bastian U, Wambsganss J, Graham MJ, Djorgovski SG, Slezak E (2018) Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. Astron Astrophys 616:L11. https://doi.org/10.1051/0004-6361/201833337. arXiv:1804.11051 [astro-ph.GA]

Kroupa P (2001) On the variation of the initial mass function. Mon Not R Astron Soc 322(2):231–246. https://doi.org/10.1046/j.1365-8711.2001.04022.x. arXiv:astro-ph/0009005 [astro-ph]

Kumar P, Zhang B (2015) The physics of gamma-ray bursts & relativistic jets. Phys Rep 561:1–109. https://doi.org/10.1016/j.physrep.2014.09.008. arXiv:1410.0679 [astro-ph.HE]

La Franca F, Bianchi S, Ponti G, Branchini E, Matt G (2014) A new cosmological distance measure using active galactic nucleus X-ray variability. Astrophys J Lett 787(1):L12. https://doi.org/10.1088/2041-8205/787/1/L12. arXiv:1404.2607 [astro-ph.CO]

Lagattuta DJ, Richard J, Clément B, Mahler G, Patrício V, Pelló R, Soucail G, Schmidt KB, Wisotzki L, Martinez J, Bina D (2017) Lens modelling Abell 370: crowning the final frontier field with MUSE. Mon Not R Astron Soc 469(4):3946–3964. https://doi.org/10.1093/mnras/stx1079. arXiv:1611.01513 [astro-ph.GA]

Lagattuta DJ, Richard J, Bauer FE, Clément B, Mahler G, Soucail G, Carton D, Kneib JP, Laporte N, Martinez J, Patrício V, Payne AV, Pelló R, Schmidt KB, de la Vieuville G (2019) Probing 3D structure with a large MUSE mosaic: extending the mass model of Frontier Field Abell 370. Mon Not R Astron Soc 485(3):3738–3760. https://doi.org/10.1093/mnras/stz620. arXiv:1904.02158 [astro-ph.GA]

Lagos M, Fishbach M, Landry P, Holz DE (2019) Standard sirens with a running Planck mass. Phys Rev D 99(8):083504. https://doi.org/10.1103/PhysRevD.99.083504. arXiv:1901.03321 [astro-ph.CO]

Lahav O, Lilje PB, Primack JR, Rees MJ (1991) Dynamical effects of the cosmological constant. Mon Not R Astron Soc 251:128–136. https://doi.org/10.1093/mnras/251.1.128

Lam TY, Clampitt J, Cai YC, Li B (2015) Voids in modified gravity reloaded: Eulerian void assignment. Mon Not R Astron Soc 450(3):3319–3330. https://doi.org/10.1093/mnras/stv797. arXiv:1408.5338 [astro-ph.CO]

Lambas DG, Lares M, Ceccarelli L, Ruiz AN, Paz DJ, Maldonado VE, Luparello HE (2016) The sparkling Universe: the coherent motions of cosmic voids. Mon Not R Astron Soc 455(1):L99–L103. https://doi.org/10.1093/mnrasl/slv151. arXiv:1510.00712 [astro-ph.CO]

Landy SD, Szalay AS (1993) Bias and variance of angular correlation functions. Astrophys J 412:64–71. https://doi.org/10.1086/172900

Lares M, Luparello HE, Maldonado V, Ruiz AN, Paz DJ, Ceccarelli L, Garcia Lambas D (2017a) Voids and superstructures: correlations and induced large-scale velocity flows. Mon Not R Astron Soc 470(1):85–94. https://doi.org/10.1093/mnras/stx1227. arXiv:1705.06541 [astro-ph.CO]

Lares M, Ruiz AN, Luparello HE, Ceccarelli L, Garcia Lambas D, Paz DJ (2017b) The sparkling Universe: clustering of voids and void clumps. Mon Not R Astron Soc 468(4):4822–4830. https://doi.org/10.1093/mnras/stx825. arXiv:1703.10428 [astro-ph.CO]

Laureijs R et al (2011) Euclid definition study report. arXiv e-prints arXiv:1110.3193 [astro-ph.CO]

Lavaux G, Wandelt BD (2012) Precision cosmography with stacked voids. Astrophys J 754:109. https://doi.org/10.1088/0004-637X/754/2/109

Lawrence A, Warren SJ, Almaini O, Edge AC, Hambly NC, Jameson RF, Lucas P, Casali M, Adamson A, Dye S, Emerson JP, Foucaud S, Hewett P, Hirst P, Hodgkin ST, Irwin MJ, Lodieu N, McMahon RG, Simpson C, Smail I, Mortlock D, Folger M (2007) The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon Not R Astron Soc 379(4):1599–1617. https://doi.org/10.1111/j.1365-2966.2007.12040.x. arXiv:astro-ph/0604426 [astro-ph]

Le Borgne D, Abraham R, Daniel K, McCarthy PJ, Glazebrook K, Savaglio S, Crampton D, Juneau S, Carlberg RG, Chen HW, Marzke RO, Roth K, Jørgensen I, Murowinski R (2006) Gemini deep deep survey. VI. Massive H$$\delta $$-strong Galaxies at $$z \simeq 1$$. Astrophys J 642(1):48–62. https://doi.org/10.1086/500005. arXiv:astro-ph/0503401 [astro-ph]

Le Borgne JF, Bruzual G, Pelló R, Lançon A, Rocca-Volmerange B, Sanahuja B, Schaerer D, Soubiran C, Vílchez-Gómez R (2003) STELIB: a library of stellar spectra at $$R \sim 2000$$. Astron Astrophys 402:433–442. https://doi.org/10.1051/0004-6361:20030243. arXiv:astro-ph/0302334 [astro-ph]

Leandro H, Marra V, Sturani R (2021) Measuring the Hubble constant with black sirens. arXiv e-prints arXiv:2109.07537

Leclercq F, Jasche J, Sutter PM, Hamaus N, Wandelt B (2015) Dark matter voids in the SDSS galaxy survey. JCAP 3:047. https://doi.org/10.1088/1475-7516/2015/03/047. arXiv:1410.0355

Lee J, Park D (2009) Constraining the dark energy equation of state with cosmic voids. Astrophys J Lett 696(1):L10–L12. https://doi.org/10.1088/0004-637X/696/1/L10. arXiv:0704.0881 [astro-ph]

Lee MG, Freedman WL, Madore BF (1993) The tip of the Red Giant branch as a distance indicator for resolved galaxies. Astrophys J 417:553. https://doi.org/10.1086/173334

Leizerovich M, Kraiselburd L, Landau SJ, Scóccola CG (2021) Testing f(R) gravity models with quasar X-ray and UV fluxes. arXiv e-prints arXiv:2112.01492

Leja J, Tacchella S, Conroy C (2019) Beyond UVJ: more efficient selection of quiescent galaxies with ultraviolet/mid-infrared fluxes. Astrophys J Lett 880(1):L9. https://doi.org/10.3847/2041-8213/ab2f8c. arXiv:1907.02970 [astro-ph.GA]

Lemon CA, Auger MW, McMahon RG (2019) Gravitationally lensed quasars in Gaia—III. 22 new lensed quasars from Gaia data release 2. Mon Not R Astron Soc 483(3):4242–4258. https://doi.org/10.1093/mnras/sty3366. arXiv:1810.04480 [astro-ph.GA]arXiv:1810.04480 [astro-ph.GA]

Li J et al (2020) The Tianlai Cylinder Pathfinder array: system functions and basic performance analysis. Sci China Phys Mech Astron 63(12):129862. https://doi.org/10.1007/s11433-020-1594-8. arXiv:2006.05605 [astro-ph.IM]

Li X, Keeley RE, Shafieloo A, Zheng X, Cao S, Biesiada M, Zhu ZH (2021a) Hubble diagram at higher redshifts: model independent calibration of quasars. Mon Not R Astron Soc 507(1):919–926. https://doi.org/10.1093/mnras/stab2154. arXiv:2103.16032 [astro-ph.CO]

Li Y, Santos MG, Grainge K, Harper S, Wang J (2021b) HI intensity mapping with MeerKAT: 1/f noise analysis. Mon Not R Astron Soc 501(3):4344–4358. https://doi.org/10.1093/mnras/staa3856. arXiv:2007.01767 [astro-ph.CO]

Liang E, Zhang B (2005) Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophys J 633(2):611–623. https://doi.org/10.1086/491594. arXiv:astro-ph/0504404 [astro-ph]

Liang N, Xiao WK, Liu Y, Zhang SN (2008) A cosmology-independent calibration of gamma-ray burst luminosity relations and the hubble diagram. Astrophys J 685(1):354–360. https://doi.org/10.1086/590903. arXiv:0802.4262 [astro-ph]

Liang Y, Zhao C, Chuang CH, Kitaura FS, Tao C (2016) Measuring baryon acoustic oscillations from the clustering of voids. Mon Not R Astron Soc 459:4020–4028. https://doi.org/10.1093/mnras/stw884. arXiv:1511.04391

Liepold CM, Quenneville ME, Ma CP, Walsh JL, McConnell NJ, Greene JE, Blakeslee JP (2020) The MASSIVE Survey. XV. A Stellar dynamical mass measurement of the supermassive Black Hole in massive elliptical galaxy NGC 1453. Astrophys J 891(1):4. https://doi.org/10.3847/1538-4357/ab6f71. arXiv:2001.08753 [astro-ph.GA]

LIGO Scientific Collaboration, Aasi J, Abbott BP, Abbott R, Abbott T, Abernathy MR, Ackley K, Adams C, Adams T, Addesso P et al (2015) Advanced LIGO. Class Quantum Grav 32(7):074001. https://doi.org/10.1088/0264-9381/32/7/074001. arXiv:1411.4547 [gr-qc]

Lin HN, Li X, Wang S, Chang Z (2015) Are long gamma-ray bursts standard candles? Mon Not R Astron Soc 453(1):128–132. https://doi.org/10.1093/mnras/stv1624. arXiv:1504.07026 [astro-ph.HE]

Lin HN, Li X, Chang Z (2016a) Effect of gamma-ray burst (GRB) spectra on the empirical luminosity correlations and the GRB Hubble diagram. Mon Not R Astron Soc 459(3):2501–2512. https://doi.org/10.1093/mnras/stw817. arXiv:1604.02285 [astro-ph.HE]

Lin HN, Li X, Chang Z (2016b) Model-independent distance calibration of high-redshift gamma-ray bursts and constrain on the $$\Lambda $$CDM model. Mon Not R Astron Soc 455(2):2131–2138. https://doi.org/10.1093/mnras/stv2471. arXiv:1507.06662 [gr-qc]

Lin W, Mack KJ, Hou L (2020) Investigating the Hubble constant tension: two numbers in the standard cosmological model. Astrophys J Lett 904(2):L22. https://doi.org/10.3847/2041-8213/abc894. arXiv:1910.02978 [astro-ph.CO]

Lin W, Chen X, Mack KJ (2021) Early-universe-physics insensitive and uncalibrated cosmic standards: constraints on $$\Omega _{{\rm {m}}}$$ and implications for the Hubble tension. arXiv e-prints arXiv:2102.05701

Linder EV (2003) Exploring the expansion history of the Universe. Phys Rev Lett 90(9):091301. https://doi.org/10.1103/PhysRevLett.90.091301. arXiv:astro-ph/0208512 [astro-ph]

Linder EV (2005) Cosmic growth history and expansion history. Phys Rev D 72(4):043529. https://doi.org/10.1103/PhysRevD.72.043529. arXiv:astro-ph/0507263

Linder EV (2017) Cosmic growth and expansion conjoined. Astropart Phys 86:41–45. https://doi.org/10.1016/j.astropartphys.2016.11.002. arXiv:1610.05321 [astro-ph.CO]

Liske J, Grazian A, Vanzella E, Dessauges M, Viel M, Pasquini L, Haehnelt M, Cristiani S, Pepe F, Avila G, Bonifacio P, Bouchy F, Dekker H, Delabre B, D’Odorico S, D’Odorico V, Levshakov S, Lovis C, Mayor M, Molaro P, Moscardini L, Murphy MT, Queloz D, Shaver P, Udry S, Wiklind T, Zucker S (2008) Cosmic dynamics in the era of Extremely Large Telescopes. Mon Not R Astron Soc 386(3):1192–1218. https://doi.org/10.1111/j.1365-2966.2008.13090.x. arXiv:0802.1532 [astro-ph]

Liu A, Shaw JR (2020) Data analysis for precision 21 cm cosmology. Publ Astron Soc Pac 132(1012):062001. https://doi.org/10.1088/1538-3873/ab5bfd. arXiv:1907.08211 [astro-ph.IM]

Liu A, Tegmark M (2011) A method for 21cm power spectrum estimation in the presence of foregrounds. Phys Rev D 83:103006. https://doi.org/10.1103/PhysRevD.83.103006. arXiv:1103.0281 [astro-ph.CO]

Liu MC, Charlot S, Graham JR (2000) Theoretical predictions for surface brightness fluctuations and implications for stellar populations of elliptical galaxies. Astrophys J 543(2):644–668. https://doi.org/10.1086/317147. arXiv:astro-ph/0004367 [astro-ph]

Liu XW, Heneka C, Amendola L (2020) Constraining coupled quintessence with the 21cm signal. JCAP 05(05):038. https://doi.org/10.1088/1475-7516/2020/05/038. arXiv:1910.02763 [astro-ph.CO]

Lloyd NM, Petrosian V, Mallozzi RS (2000) Cosmological versus Intrinsic: the correlation between intensity and the peak of the $$\nu $$F$$_{{\nu }}$$ spectrum of gamma-ray bursts. Astrophys J 534(1):227–238. https://doi.org/10.1086/308742. arXiv:astro-ph/9908191 [astro-ph]

Lochner M, McEwen JD, Peiris HV, Lahav O, Winter MK (2016) Photometric Supernova classification with machine learning. Astrophys J Suppl 225(2):31. https://doi.org/10.3847/0067-0049/225/2/31. arXiv:1603.00882 [astro-ph.IM]

Lochner M, Scolnic D, Almoubayyed H, Anguita T, Awan H, Gawiser E, Gontcho A, SG, Graham ML, Gris P, Huber S, Jha SW, Lynne Jones R, Kim AG, Mandelbaum R, Marshall P, Petrushevska T, Regnault N, Setzer CN, Suyu SH, Yoachim P, Biswas R, Blaineau T, Hook I, Moniez M, Neilsen E, Peiris H, Rothchild D, Stubbs C, LSST Dark Energy Science Collaboration (2022) The impact of observing strategy on cosmological constraints with LSST. Astrophys J Suppl 259(2):58. https://doi.org/10.3847/1538-4365/ac5033. arXiv:2104.05676 [astro-ph.CO]

Loeb A (1998) Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects. ApJL 499(2):L111–L114. https://doi.org/10.1086/311375. arXiv:astro-ph/9802122 [astro-ph]

Loeb A, Wyithe S (2008) Precise measurement of the cosmological power spectrum with a dedicated 21cm survey after reionization. Phys Rev Lett 100:161301. https://doi.org/10.1103/PhysRevLett.100.161301. arXiv:0801.1677 [astro-ph]

López-Corredoira M, Melia F, Lusso E, Risaliti G (2016) Cosmological test with the QSO Hubble diagram. Int J Mod Phys D 25(5):1650060. https://doi.org/10.1142/S0218271816500607. arXiv:1602.06743 [astro-ph.CO]

Lotz J, Mountain M, Grogin NA, Koekemoer AM, Capak PL, Mack J, Coe DA, Barker EA, Adler DS, Avila RJ, Anderson J, Casertano S, Christian CA, Gonzaga S, Ferguson HC et al (2014) The HST frontier fields. In: American Astronomical Society Meeting Abstracts #223. American Astronomical Society Meeting Abstracts, vol 223, p 254.01

LSST Science Collaboration, Abell PA, Allison J, Anderson SF, Andrew JR, Angel JRP, Armus L, Arnett D, Asztalos SJ, Axelrod TS, Bailey S, Ballantyne DR, Bankert JR, Barkhouse WA, Barr JD, Barrientos LF, Barth AJ, Bartlett JG et al (2009) LSST Science Book, Version 2.0. arXiv e-prints arXiv:0912.0201. arXiv:0912.0201 [astro-ph.IM]

LSST Dark Energy Science Collaboration, Mandelbaum R, Eifler T, Hložek R, Collett T, Gawiser E, Scolnic D, Alonso D, Awan H, Biswas R, Blazek J, Burchat P, Chisari NE, Dell’Antonio I, Digel S, Frieman J, Goldstein DA, Hook I, Ivezić Ž, Kahn SM, Kamath S, Kirkby D, Kitching T, Krause E, Leget PF, Marshall PJ, Meyers J, Miyatake H, Newman JA, Nichol R, Rykoff E, Sanchez FJ, Slosar A, Sullivan M, Troxel MA (2018) The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document. arXiv e-prints arXiv:1809.01669 [astro-ph.CO]

Lu RJ, Wei JJ, Liang EW, Zhang BB, Lü HJ, Lü LZ, Lei WH, Zhang B (2012) A comprehensive analysis of Fermi gamma-ray burst data. II. E $$_{p}$$ evolution patterns and implications for the observed spectrum-luminosity relations. Astrophys J 756(2):112. https://doi.org/10.1088/0004-637X/756/2/112. arXiv:1204.0714 [astro-ph.HE]

Lusso E (2019) The nonlinear X-ray/ultraviolet relation in active galactic nuclei: Contribution of instrumental effects on the X-ray variability. Astron Nachr 340(4):267–272. https://doi.org/10.1002/asna.201913608. arXiv:1812.03179 [astro-ph.HE]

Lusso E (2020) Cosmology with quasars: predictions for eROSITA from a quasar Hubble diagram. Front Astron Space Sci 7:8. https://doi.org/10.3389/fspas.2020.00008. arXiv:2002.02464 [astro-ph.CO]

Lusso E, Risaliti G (2016) The tight relation between X-ray and ultraviolet luminosity of quasars. Astrophys J 819:154. https://doi.org/10.3847/0004-637X/819/2/154. arXiv:1602.01090

Lusso E, Risaliti G (2017) Quasars as standard candles. I. The physical relation between disc and coronal emission. Astron Astrophys 602:A79. https://doi.org/10.1051/0004-6361/201630079. arXiv:1703.05299 [astro-ph.HE]

Lusso E, Worseck G, Hennawi JF, Prochaska JX, Vignali C, Stern J, O’Meara JM (2015) The first ultraviolet quasar-stacked spectrum at z $$\simeq $$ 2.4 from WFC3. Mon Not R Astron Soc 449:4204–4220. https://doi.org/10.1093/mnras/stv516. arXiv:1503.02075

Lusso E, Piedipalumbo E, Risaliti G, Paolillo M, Bisogni S, Nardini E, Amati L (2019a) Tension with the flat $$\Lambda $$CDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astron Astrophys 628:L4. https://doi.org/10.1051/0004-6361/201936223. arXiv:1907.07692 [astro-ph.CO]

Lusso E, Piedipalumbo E, Risaliti G, Paolillo M, Bisogni S, Nardini E, Amati L (2019b) Tension with the flat $$\Lambda $$CDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astron Astrophys 628:L4. https://doi.org/10.1051/0004-6361/201936223. arXiv:1907.07692 [astro-ph.CO]

Lusso E, Risaliti G, Nardini E, Bargiacchi G, Benetti M, Bisogni S, Capozziello S, Civano F, Eggleston L, Elvis M, Fabbiano G, Gilli R, Marconi A, Paolillo M, Piedipalumbo E, Salvestrini F, Signorini M, Vignali C (2020) Quasars as standard candles. III. Validation of a new sample for cosmological studies. Astron Astrophys 642:A150. https://doi.org/10.1051/0004-6361/202038899. arXiv:2008.08586 [astro-ph.GA]

Macaulay E, Davis TM, Scovacricchi D, Bacon D, Collett TE, Nichol RC (2017) The effects of velocities and lensing on moments of the Hubble diagram. Mon Not R Astron Soc 467(1):259–272. https://doi.org/10.1093/mnras/stw3339. arXiv:1607.03966 [astro-ph.CO]

Macaulay E et al (2020) Weak lensing of Type Ia Supernovae from the dark energy survey. Mon Not R Astron Soc 496(3):4051–4059. https://doi.org/10.1093/mnras/staa1852. arXiv:2007.07956 [astro-ph.CO]

MacCrann N, Zuntz J, Bridle S, Jain B, Becker MR (2015) Cosmic discordance: are Planck CMB and CFHTLenS weak lensing measurements out of tune? Mon Not R Astron Soc 451(3):2877–2888. https://doi.org/10.1093/mnras/stv1154. arXiv:1408.4742 [astro-ph.CO]

MacLeod CL, Hogan CJ (2008) Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys Rev D 77(4):043512. https://doi.org/10.1103/PhysRevD.77.043512. arXiv:0712.0618 [astro-ph]

Magira H, Jing YP, Suto Y (2000) Cosmological redshift-space distortion on clustering of high-redshift objects: correction for nonlinear effects in the power spectrum and tests with N-body simulations. Astrophys J 528(1):30–50. https://doi.org/10.1086/308170. arXiv:astro-ph/9907438 [astro-ph]

Magris CG, Binette L, Bruzual AG (2003) ADEMIS: a library of evolutionary models for emission-line galaxies. I. Dust-free models. Astrophys J Suppl 149(2):313–326. https://doi.org/10.1086/378975. arXiv:astro-ph/0311233 [astro-ph]

Mancarella M, Genoud-Prachex E, Maggiore M (2021) Cosmology and modified gravitational wave propagation from binary black hole population models. arXiv e-prints arXiv:2112.05728

Mandel I, Farr WM, Gair JR (2019) Extracting distribution parameters from multiple uncertain observations with selection biases. Mon Not R Astron Soc 486(1):1086–1093. https://doi.org/10.1093/mnras/stz896. arXiv:1809.02063 [physics.data-an]

Mantz AB et al (2015) Weighing the giants IV. Cosmology and neutrino mass. Mon Not R Astron Soc 446:2205–2225. https://doi.org/10.1093/mnras/stu2096. arXiv:1407.4516 [astro-ph.CO]

Mao Q, Berlind AA, Scherrer RJ, Neyrinck MC, Scoccimarro R, Tinker JL, McBride CK, Schneider DP (2017a) Cosmic voids in the SDSS DR12 BOSS galaxy sample: the Alcock-Paczynski test. Astrophys J 835:160. https://doi.org/10.3847/1538-4357/835/2/160. arXiv:1602.06306

Mao Q, Berlind AA, Scherrer RJ, Neyrinck MC, Scoccimarro R, Tinker JL, McBride CK, Schneider DP, Pan K, Bizyaev D, Malanushenko E, Malanushenko V (2017b) A cosmic void catalog of SDSS DR12 BOSS galaxies. Astrophys J 835(2):161. https://doi.org/10.3847/1538-4357/835/2/161. arXiv:1602.02771 [astro-ph.CO]

Mao Y, Tegmark M, McQuinn M, Zaldarriaga M, Zahn O (2008) How accurately can 21 cm tomography constrain cosmology? Phys Rev D 78:023529. https://doi.org/10.1103/PhysRevD.78.023529. arXiv:0802.1710 [astro-ph]

Maraston C, Strömbäck G (2011) Stellar population models at high spectral resolution. Mon Not R Astron Soc 418(4):2785–2811. https://doi.org/10.1111/j.1365-2966.2011.19738.x. arXiv:1109.0543 [astro-ph.CO]

Marín-Franch A, Aparicio A, Piotto G, Rosenberg A, Chaboyer B, Sarajedini A, Siegel M, Anderson J, Bedin LR, Dotter A, Hempel M, King I, Majewski S, Milone AP, Paust N, Reid IN (2009) The ACS survey of galactic globular clusters. VII. Relative ages. Astrophys J 694(2):1498–1516. https://doi.org/10.1088/0004-637X/694/2/1498. arXiv:0812.4541 [astro-ph]

Martin DC, Fanson J, Schiminovich D, Morrissey P, Friedman PG, Barlow TA, Conrow T, Grange R, Jelinsky PN, Milliard B, Siegmund OHW, Bianchi L, Byun YI, Donas J, Forster K, Heckman TM, Lee YW, Madore BF, Malina RF, Neff SG, Rich RM, Small T, Surber F, Szalay AS, Welsh B, Wyder TK (2005) The Galaxy Evolution explorer: a space ultraviolet survey mission. Astrophys J Lett 619(1):L1–L6. https://doi.org/10.1086/426387. arXiv:astro-ph/0411302 [astro-ph]

Martins CJAP, Martinelli M, Calabrese E, Ramos MPLP (2016) Real-time cosmography with redshift derivatives. Phys Rev D 94(4):043001. https://doi.org/10.1103/PhysRevD.94.043001. arXiv:1606.07261 [astro-ph.CO]

Martins CJAP, Alves CS, Esteves J, Lapel A, Pereira BG (2021) Closing the cosmological loop with the redshift drift. arXiv e-prints arXiv:2110.12242 [astro-ph.CO]

Martone R, Izzo L, Della Valle M, Amati L, Longo G, Götz D (2017) False outliers of the E$$_{p, i}$$ - E$$_{iso}$$ correlation? Astron Astrophys 608:A52. https://doi.org/10.1051/0004-6361/201730704. arXiv:1708.03873 [astro-ph.HE]

Massara E, Villaescusa-Navarro F, Viel M, Sutter PM (2015) Voids in massive neutrino cosmologies. JCAP 11:018. https://doi.org/10.1088/1475-7516/2015/11/018. arXiv:1506.03088

Massara E, Villaescusa-Navarro F, Ho S, Dalal N, Spergel DN (2021) Using the marked power spectrum to detect the signature of neutrinos in large-scale structure. Phys Rev Lett 126(1):011301. https://doi.org/10.1103/PhysRevLett.126.011301. arXiv:2001.11024 [astro-ph.CO]

Massara E, Villaescusa-Navarro F, Hahn C, Abidi MM, Eickenberg M, Ho S, Lemos P, Moradinezhad Dizgah A, Régaldo-Saint Blancard B (2022) Cosmological information in the marked power spectrum of the galaxy field. arXiv e-prints arXiv:2206.01709 [astro-ph.CO]

Mastrogiovanni S, Leyde K, Karathanasis C, Chassande-Mottin E, Steer DA, Gair J, Ghosh A, Gray R, Mukherjee S, Rinaldi S (2021) On the importance of source population models for gravitational-wave cosmology. Phys Rev D 104(6):062009. https://doi.org/10.1103/PhysRevD.104.062009. arXiv:2103.14663 [gr-qc]

Masui KW (2013) Advancing precision cosmology with 21 cm intensity mapping. PhD thesis, University of Toronto (Canada)

Masui KW, McDonald P, Pen UL (2010) Near term measurements with 21 cm intensity mapping: neutral hydrogen fraction and BAO at $$z < 2$$. Phys Rev D 81:103527. https://doi.org/10.1103/PhysRevD.81.103527. arXiv:1001.4811 [astro-ph.CO]

Masui KW et al (2013) Measurement of 21 cm brightness fluctuations at $$z \sim 0.8$$ in cross-correlation. Astrophys J 763:L20. https://doi.org/10.1088/2041-8205/763/1/L20. arXiv:1208.0331 [astro-ph.CO]

Matshawule SD, Spinelli M, Santos MG, Ngobese S (2021) H I intensity mapping with MeerKAT: primary beam effects on foreground cleaning. Mon Not R Astron Soc 506(4):5075–5092. https://doi.org/10.1093/mnras/stab1688. arXiv:2011.10815 [astro-ph.CO]

Mawatari K, Yamada T, Fazio GG, Huang JS, Ashby MLN (2016) Possible identification of massive and evolved galaxies at z $$\gtrsim $$ 5. Publ Astron Soc Japan 68(3):46. https://doi.org/10.1093/pasj/psw041. arXiv:1603.08394 [astro-ph.GA]

McCully C, Keeton CR, Wong KC, Zabludoff AI (2014) A new hybrid framework to efficiently model lines of sight to gravitational lenses. Mon Not R Astron Soc 443(4):3631–3642. https://doi.org/10.1093/mnras/stu1316. arXiv:1401.0197 [astro-ph.CO]

McCully C, Keeton CR, Wong KC, Zabludoff AI (2017) Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. Astrophys J 836(1):141. https://doi.org/10.3847/1538-4357/836/1/141. arXiv:1601.05417 [astro-ph.CO]

McDermid RM, Alatalo K, Blitz L, Bournaud F, Bureau M, Cappellari M, Crocker AF, Davies RL, Davis TA, de Zeeuw PT, Duc PA, Emsellem E, Khochfar S, Krajnović D, Kuntschner H, Morganti R, Naab T, Oosterloo T, Sarzi M, Scott N, Serra P, Weijmans AM, Young LM (2015) The ATLAS$$^{3D}$$ Project—XXX. Star formation histories and stellar population scaling relations of early-type galaxies. Mon Not R Astron Soc 448(4):3484–3513. https://doi.org/10.1093/mnras/stv105. arXiv:1501.03723 [astro-ph.GA]

McDonald P, Seljak U (2009) How to evade the sample variance limit on measurements of redshift-space distortions. JCAP 10:007. https://doi.org/10.1088/1475-7516/2009/10/007. arXiv:0810.0323 [astro-ph]

Medvedev P, Sazonov S, Gilfanov M, Burenin R, Khorunzhev G, Meshcheryakov A, Sunyaev R, Bikmaev I, Irtuganov E (2020) SRG/eROSITA uncovers the most X-ray luminous quasar at $$z > 6$$. Mon Not R Astron Soc 497(2):1842–1850. https://doi.org/10.1093/mnras/staa2051. arXiv:2007.04735 [astro-ph.HE]

Mei S, Blakeslee JP, Tonry JL, Jordán A, Peng EW, Côté P, Ferrarese L, Merritt D, Milosavljević M, West MJ (2005a) The ACS virgo cluster survey. IV. Data reduction procedures for surface brightness fluctuation measurements with the advanced camera for surveys. Astrophys J Suppl 156:113–125. https://doi.org/10.1086/426544

Mei S, Blakeslee JP, Tonry JL, Jordán A, Peng EW, Côté P, Ferrarese L, West MJ, Merritt D, Milosavljević M (2005b) The advanced camera for surveys virgo cluster survey. V. Surface brightness fluctuation calibration for giant and dwarf early-type galaxies. Astrophys J 625(1):121–129. https://doi.org/10.1086/429554

Mei S, Blakeslee JP, Côté P, Tonry JL, West MJ, Ferrarese L, Jordán A, Peng EW, Anthony A, Merritt D (2007) The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster. Astrophys J 655(1):144–162. https://doi.org/10.1086/509598. arXiv:astro-ph/0702510 [astro-ph]

Melchior P, Sutter PM, Sheldon ES, Krause E, Wandelt BD (2014) First measurement of gravitational lensing by cosmic voids in SDSS. Mon Not R Astron Soc 440:2922–2927. https://doi.org/10.1093/mnras/stu456. arXiv:1309.2045

Melia F (2019) Cosmological test using the Hubble diagram of high-z quasars. Mon Not R Astron Soc 489(1):517–523. https://doi.org/10.1093/mnras/stz2120. arXiv:1907.13127 [astro-ph.CO]

Meneghetti M, Argazzi R, Pace F, Moscardini L, Dolag K, Bartelmann M, Li G, Oguri M (2007) Arc sensitivity to cluster ellipticity, asymmetries, and substructures. Astron Astrophys 461(1):25–38. https://doi.org/10.1051/0004-6361:20065722. arXiv:astro-ph/0606006 [astro-ph]

Meneghetti M, Fedeli C, Pace F, Gottlöber S, Yepes G (2010) Strong lensing in the MareNostrum Universe. I. Biases in the cluster lens population. Astron Astrophys 519:A90. https://doi.org/10.1051/0004-6361/201014098. arXiv:1003.4544 [astro-ph.CO]

Menzel ML, Merloni A, Georgakakis A, Salvato M, Aubourg E, Brandt WN, Brusa M, Buchner J, Dwelly T, Nandra K, Pâris I, Petitjean P, Schwope A (2016) A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field. Mon Not R Astron Soc 457:110–132. https://doi.org/10.1093/mnras/stv2749. arXiv:1511.07870

Merlin E, Fontana A, Castellano M, Santini P, Torelli M, Boutsia K, Wang T, Grazian A, Pentericci L, Schreiber C, Ciesla L, McLure R, Derriere S, Dunlop JS, Elbaz D (2018) Chasing passive galaxies in the early Universe: a critical analysis in CANDELS GOODS-South. Mon Not R Astron Soc 473(2):2098–2123. https://doi.org/10.1093/mnras/stx2385. arXiv:1709.00429 [astro-ph.GA]

Merlin E, Fortuni F, Torelli M, Santini P, Castellano M, Fontana A, Grazian A, Pentericci L, Pilo S, Schmidt KB (2019) Red and dead CANDELS: massive passive galaxies at the dawn of the Universe. Mon Not R Astron Soc 490(3):3309–3328. https://doi.org/10.1093/mnras/stz2615. arXiv:1909.07996 [astro-ph.GA]

Merloni A, Predehl P, Becker W, Böhringer H, Boller T, Brunner H, Brusa M, Dennerl K, Freyberg M, Friedrich P, Georgakakis A, Haberl F, Hasinger G, Meidinger N, Mohr J, Nandra K, Rau A, Reiprich TH, Robrade J, Salvato M, Santangelo A, Sasaki M, Schwope A, Wilms J, German eROSITA Consortium (2012) eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv e-prints arXiv:1209.3114 [astro-ph.HE]

Merloni A, Bongiorno A, Brusa M, Iwasawa K, Mainieri V, Magnelli B, Salvato M, Berta S, Cappelluti N, Comastri A, Fiore F, Gilli R, Koekemoer A, Le Floc’h E, Lusso E, Lutz D, Miyaji T, Pozzi F, Riguccini L, Rosario DJ, Silverman J, Symeonidis M, Treister E, Vignali C, Zamorani G (2014) The incidence of obscuration in active galactic nuclei. Mon Not R Astron Soc 437(4):3550–3567. https://doi.org/10.1093/mnras/stt2149. arXiv:1311.1305 [astro-ph.CO]

Mertens FG, Ghosh A, Koopmans LVE (2018) Statistical 21-cm signal separation via Gaussian process regression analysis. Mon Not R Astron Soc 478(3):3640–3652. https://doi.org/10.1093/mnras/sty1207. arXiv:1711.10834 [astro-ph.CO]

Messenger C, Read J (2012) Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. Phys Rev Lett 108(9):091101. https://doi.org/10.1103/PhysRevLett.108.091101. arXiv:1107.5725 [gr-qc]

Mészáros P (2002) Theories of gamma-ray bursts. Annu Rev Astron Astrophys 40:137–169. https://doi.org/10.1146/annurev.astro.40.060401.093821. arXiv:astro-ph/0111170 [astro-ph]

Metcalf RB, Meneghetti M, Avestruz C, Bellagamba F, Bom CR, Bertin E, Cabanac R, Courbin F, Davies A, Decencière E, Flamary R, Gavazzi R, Geiger M, Hartley P, Huertas-Company M, Jackson N, Jacobs C, Jullo E, Kneib JP, Koopmans LVE, Lanusse F, Li CL, Ma Q, Makler M, Li N, Lightman M, Petrillo CE, Serjeant S, Schäfer C, Sonnenfeld A, Tagore A, Tortora C, Tuccillo D, Valentín MB, Velasco-Forero S, Verdoes Kleijn GA, Vernardos G (2019) The strong gravitational lens finding challenge. Astron Astrophys 625:A119. https://doi.org/10.1051/0004-6361/201832797. arXiv:1802.03609 [astro-ph.GA]

Micheletti D, Iovino A, Hawken AJ, Granett BR, Bolzonella M, Cappi A, Guzzo L, Abbas U, Adami C, Arnouts S, Bel J, Bottini D, Branchini E, Coupon J, Cucciati O, Davidzon I, De Lucia G, de la Torre S, Fritz A, Franzetti P, Fumana M, Garilli B, Ilbert O, Krywult J, Le Brun V, Le Fèvre O et al (2014) The VIMOS public extragalactic redshift survey. Searching for cosmic voids. Astron Astrophys 570:A106. https://doi.org/10.1051/0004-6361/201424107. arXiv:1407.2969 [astro-ph.CO]

Mieske S, Hilker M, Infante L (2005) The distance to Hydra and Centaurus from surface brightness fluctuations: consequences for the Great Attractor model. Astron Astrophys 438(1):103–119. https://doi.org/10.1051/0004-6361:20041583. arXiv:astro-ph/0503647 [astro-ph]

Mieske S, Hilker M, Infante L (2006) An I-band calibration of surface brightness fluctuation measurements at blue colours. Astron Astrophys 458(3):1013–1023. https://doi.org/10.1051/0004-6361:20054685

Mignoli M, Zamorani G, Scodeggio M, Cimatti A, Halliday C, Lilly SJ, Pozzetti L, Vergani D, Carollo CM, Contini T, Le Févre O et al (2009) The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties. Astron Astrophys 493(1):39–49. https://doi.org/10.1051/0004-6361:200810520. arXiv:0810.2245 [astro-ph]

Millon M, Courbin F, Bonvin V, Buckley-Geer E, Fassnacht CD, Frieman J, Marshall PJ, Suyu SH, Treu T, Anguita T, Motta V, Agnello A, Chan JHH, Chao DCY, Chijani M, Gilman D, Gilmore K, Lemon C, Lucey JR, Melo A, Paic E, Rojas K, Sluse D, Williams PR, Hempel A, Kim S, Lachaume R, Rabus M (2020a) TDCOSMO. II. Six new time delays in lensed quasars from high-cadence monitoring at the MPIA 2.2 m telescope. Astron Astrophys 642:A193. https://doi.org/10.1051/0004-6361/202038698. arXiv:2006.10066 [astro-ph.CO]

Millon M, Galan A, Courbin F, Treu T, Suyu SH, Ding X, Birrer S, Chen GCF, Shajib AJ, Sluse D, Wong KC, Agnello A, Auger MW, Buckley-Geer EJ, Chan JHH, Collett T, Fassnacht CD, Hilbert S, Koopmans LVE, Motta V, Mukherjee S, Rusu CE, Sonnenfeld A, Spiniello C, Van de Vyvere L (2020b) TDCOSMO. I. An exploration of systematic uncertainties in the inference of H$$_{0}$$ from time-delay cosmography. Astron Astrophys 639:A101. https://doi.org/10.1051/0004-6361/201937351. arXiv:1912.08027 [astro-ph.CO]

Mingo B, Watson MG, Rosen SR, Hardcastle MJ, Ruiz A, Blain A, Carrera FJ, Mateos S, Pineau FX, Stewart GC (2016) The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS. Mon Not R Astron Soc 462:2631–2667. https://doi.org/10.1093/mnras/stw1826. arXiv:1607.06471

Momcheva I, Williams K, Keeton C, Zabludoff A (2006) A spectroscopic study of the environments of gravitational lens galaxies. Astrophys J 641(1):169–189. https://doi.org/10.1086/500382. arXiv:astro-ph/0511594 [astro-ph]

Montiel A, Lazkoz R, Sendra I, Escamilla-Rivera C, Salzano V (2014) Nonparametric reconstruction of the cosmic expansion with local regression smoothing and simulation extrapolation. Phys Rev D 89(4):043007. https://doi.org/10.1103/PhysRevD.89.043007. arXiv:1401.4188 [astro-ph.CO]

Montiel A, Cabrera JI, Hidalgo JC (2021) Improving sampling and calibration of gamma-ray bursts as distance indicators. Mon Not R Astron Soc 501(3):3515–3526. https://doi.org/10.1093/mnras/staa3926. arXiv:2003.03387 [astro-ph.HE]

Mooley KP, Deller AT, Gottlieb O, Nakar E, Hallinan G, Bourke S, Frail DA, Horesh A, Corsi A, Hotokezaka K (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561(7723):355–359. https://doi.org/10.1038/s41586-018-0486-3. arXiv:1806.09693 [astro-ph.HE]

Moresco M (2015) Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $$z \sim 2$$. Mon Not R Astron Soc 450:L16–L20. https://doi.org/10.1093/mnrasl/slv037. arXiv:1503.01116

Moresco M, Marulli F (2017) Cosmological constraints from a joint analysis of cosmic growth and expansion. Mon Not R Astron Soc 471(1):L82–L86. https://doi.org/10.1093/mnrasl/slx112. arXiv:1705.07903 [astro-ph.CO]

Moresco M, Jimenez R, Cimatti A, Pozzetti L (2011) Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers. JCAP 3:045. https://doi.org/10.1088/1475-7516/2011/03/045. arXiv:1010.0831 [astro-ph.CO]

Moresco M, Cimatti A, Jimenez R, Pozzetti L, Zamorani G, Bolzonella M, Dunlop J, Lamareille F, Mignoli M, Pearce H, Rosati P, Stern D, Verde L et al (2012a) Improved constraints on the expansion rate of the Universe up to $${{\rm z}} 1.1$$ from the spectroscopic evolution of cosmic chronometers. JCAP 8:006. https://doi.org/10.1088/1475-7516/2012/08/006. arXiv:1201.3609 [astro-ph.CO]

Moresco M, Verde L, Pozzetti L, Jimenez R, Cimatti A (2012b) New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to $$z \sim 1.75$$. JCAP 7:053. https://doi.org/10.1088/1475-7516/2012/07/053. arXiv:1201.6658 [astro-ph.CO]

Moresco M, Pozzetti L, Cimatti A, Zamorani G, Bolzonella M, Lamareille F, Mignoli M, Zucca E, Lilly SJ, Carollo CM, Contini T, Kneib JP, Le Fèvre O, Mainieri V, Renzini A et al (2013) Spot the difference. Impact of different selection criteria on observed properties of passive galaxies in zCOSMOS-20k sample. Astron Astrophys 558:A61. https://doi.org/10.1051/0004-6361/201321797. arXiv:1305.1308 [astro-ph.CO]

Moresco M, Jimenez R, Verde L, Cimatti A, Pozzetti L, Maraston C, Thomas D (2016a) Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers. JCAP 12:039. https://doi.org/10.1088/1475-7516/2016/12/039. arXiv:1604.00183

Moresco M, Pozzetti L, Cimatti A, Jimenez R, Maraston C, Verde L, Thomas D, Citro A, Tojeiro R, Wilkinson D (2016b) A 6% measurement of the Hubble parameter at $${{\rm z}} 0.45$$: direct evidence of the epoch of cosmic re-acceleration. JCAP 5:014. https://doi.org/10.1088/1475-7516/2016/05/014. arXiv:1601.01701

Moresco M, Jimenez R, Verde L, Pozzetti L, Cimatti A, Citro A (2018) Setting the stage for cosmic chronometers. I. Assessing the impact of young stellar populations on hubble parameter measurements. Astrophys J 868(2):84. https://doi.org/10.3847/1538-4357/aae829. arXiv:1804.05864 [astro-ph.CO]

Moresco M, Jimenez R, Verde L, Cimatti A, Pozzetti L (2020) Setting the stage for cosmic chronometers. II. Impact of Stellar population synthesis models systematics and full covariance matrix. Astrophys J 898(1):82. https://doi.org/10.3847/1538-4357/ab9eb0. arXiv:2003.07362 [astro-ph.GA]

Morishita T, Abramson LE, Treu T, Brammer GB, Jones T, Kelly P, Stiavelli M, Trenti M, Vulcani B, Wang X (2019) Massive dead galaxies at z$$\sim $$2 with HST Grism spectroscopy. I. Star formation histories and metallicity enrichment. Astrophys J 877(2):141. https://doi.org/10.3847/1538-4357/ab1d53. arXiv:1812.06980 [astro-ph.GA]

Mortlock DJ, Feeney SM, Peiris HV, Williamson AR, Nissanke SM (2019) Unbiased Hubble constant estimation from binary neutron star mergers. Phys Rev D 100(10):103523. https://doi.org/10.1103/PhysRevD.100.103523. arXiv:1811.11723 [astro-ph.CO]

Mould J, Sakai S (2009) The extragalactic distance scale without cepheids. II. Surface brightness fluctuations. Astrophys J 694(2):1331–1334. https://doi.org/10.1088/0004-637X/694/2/1331

Muccino M, Izzo L, Luongo O, Boshkayev K, Amati L, Della Valle M, Pisani GB, Zaninoni E (2021) Tracing dark energy history with gamma-ray bursts. Astrophys J 908(2):181. https://doi.org/10.3847/1538-4357/abd254. arXiv:2012.03392 [astro-ph.CO]

Mueller EM, Rezaie M, Percival WJ, Ross AJ, Ruggeri R, Seo HJ, Gil-Marın H, Bautista J, Brownstein JR, Dawson K, de la Macorra A, Palanque-Delabrouille N, Rossi G, Schneider DP, Yeche C (2021) The clustering of galaxies in the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space. arXiv e-prints arXiv:2106.13725 [astro-ph.CO]

Mukherjee P, Mukherjee A (2021) Assessment of the cosmic distance duality relation using Gaussian process. Mon Not R Astron Soc 504(3):3938–3946. https://doi.org/10.1093/mnras/stab1054. arXiv:2104.06066 [astro-ph.CO]

Mukherjee S, Wandelt BD (2018) Beyond the classical distance-redshift test: cross-correlating redshift-free standard candles and sirens with redshift surveys. arXiv e-prints arXiv:1808.06615 [astro-ph.CO]

Mukherjee S, Wandelt BD, Nissanke SM, Silvestri A (2021) Accurate precision cosmology with redshift unknown gravitational wave sources. Phys Rev D 103(4):043520. https://doi.org/10.1103/PhysRevD.103.043520. arXiv:2007.02943 [astro-ph.CO]

Muzzin A, Marchesini D, Stefanon M, Franx M, McCracken HJ, Milvang-Jensen B, Dunlop JS, Fynbo JPU, Brammer G, Labbé I, van Dokkum PG (2013) The evolution of the Stellar mass functions of star-forming and quiescent galaxies to z = 4 from the COSMOS/UltraVISTA survey. Astrophys J 777(1):18. https://doi.org/10.1088/0004-637X/777/1/18. arXiv:1303.4409 [astro-ph.CO]

Nadathur S, Crittenden R (2016) A detection of the integrated Sachs-Wolfe imprint of cosmic superstructures using a matched-filter approach. Astrophys J Lett 830(1):L19. https://doi.org/10.3847/2041-8205/830/1/L19. arXiv:1608.08638 [astro-ph.CO]

Nadathur S, Woodfinden A, Percival WJ, Aubert M, Bautista J, Dawson K, Escoffier S, Fromenteau S, Gil-Marín H, Rich J, Ross AJ, Rossi G, Magaña MV, Brownstein JR, Schneider DP (2020) The completed SDSS-IV extended baryon oscillation spectroscopic survey: geometry and growth from the anisotropic void-galaxy correlation function in the luminous red galaxy sample. Mon Not R Astron Soc 499(3):4140–4157. https://doi.org/10.1093/mnras/staa3074. arXiv:2008.06060 [astro-ph.CO]

Nakar E, Piran T (2005) Outliers to the peak energy-isotropic energy relation in gamma-ray bursts. Mon Not R Astron Soc 360(1):L73–L76. https://doi.org/10.1111/j.1745-3933.2005.00049.x. arXiv:astro-ph/0412232 [astro-ph]

Nardini E, Lusso E, Risaliti G, Bisogni S, Civano F, Elvis M, Fabbiano G, Gilli R, Marconi A, Salvestrini F, Vignali C (2019) The most luminous blue quasars at $$3.0 < \text{ z } < 3.3$$. I. A tale of two X-ray populations. Astron Astrophys 632:A109. https://doi.org/10.1051/0004-6361/201936911. arXiv:1910.04604 [astro-ph.GA]

Nava L, Ghirlanda G, Ghisellini G, Celotti A (2011) Fermi/GBM and BATSE gamma-ray bursts: comparison of the spectral properties. Mon Not R Astron Soc 415(4):3153–3162. https://doi.org/10.1111/j.1365-2966.2011.18928.x. arXiv:1012.3968 [astro-ph.HE]

Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. Astrophys J 490(2):493–508. https://doi.org/10.1086/304888. arXiv:astro-ph/9611107 [astro-ph]

Nayyeri H, Mobasher B, Hemmati S, De Barros S, Ferguson HC, Wiklind T, Dahlen T, Dickinson M, Giavalisco M, Fontana A, Ashby M, Barro G, Guo Y, Hathi NP, Kassin S, Koekemoer A, Willner S, Dunlop JS, Paris D, Targett TA (2014) A study of massive and evolved galaxies at high redshift. Astrophys J 794(1):68. https://doi.org/10.1088/0004-637X/794/1/68. arXiv:1408.3684 [astro-ph.GA]

Newburgh L et al (2016) HIRAX: a probe of dark energy and radio transients. Proc SPIE Int Soc Opt Eng 9906:99065X. https://doi.org/10.1117/12.2234286. arXiv:1607.02059 [astro-ph.IM]

Newburgh LB et al (2014) Calibrating CHIME, a new radio interferometer to probe dark energy. Proc SPIE Int Soc Opt Eng 9145:4V. https://doi.org/10.1117/12.2056962. arXiv:1406.2267 [astro-ph.IM]

Neyrinck MC (2008) ZOBOV: a parameter-free void-finding algorithm. Mon Not R Astron Soc 386:2101–2109. https://doi.org/10.1111/j.1365-2966.2008.13180.x. arXiv:0712.3049

Nguyen DD, den Brok M, Seth AC, Davis TA, Greene JE, Cappellari M, Jensen JB, Thater S, Iguchi S, Imanishi M, Izumi T, Nyland K, Neumayer N, Nakanishi K, Nguyen PM, Tsukui T, Bureau M, Onishi K, Nguyen QL, Le NM (2020) The MBHBM$$_{{\star }}$$ project. I. Measurement of the Central Black Hole Mass in Spiral Galaxy NGC 3504 Using molecular gas kinematics. Astrophys J 892(1):68. https://doi.org/10.3847/1538-4357/ab77aa. arXiv:1902.03813 [astro-ph.GA]

Nielsen JT, Guffanti A, Sarkar S (2016) Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci Rep 6:35596. https://doi.org/10.1038/srep35596. arXiv:1506.01354 [astro-ph.CO]

Nunes RC, Pan S, Saridakis EN (2016) New constraints on interacting dark energy from cosmic chronometers. Phys Rev D 94(2):023508. https://doi.org/10.1103/PhysRevD.94.023508. arXiv:1605.01712 [astro-ph.CO]

Offringa AR, de Bruyn AG, Biehl M, Zaroubi S, Bernardi G, Pandey VN (2010) Post-correlation radio frequency interference classification methods. Mon Not R Astron Soc 405:155–167. https://doi.org/10.1111/j.1365-2966.2010.16471.x. arXiv:1002.1957 [astro-ph.IM]

Oguri M (2016) Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies. Phys Rev D 93(8):083511. https://doi.org/10.1103/PhysRevD.93.083511. arXiv:1603.02356 [astro-ph.CO]

Oguri M, Kawano Y (2003) Gravitational lens time delays for distant supernovae: breaking the degeneracy between radial mass profiles and the Hubble constant. Mon Not R Astron Soc 338(4):L25–L29. https://doi.org/10.1046/j.1365-8711.2003.06290.x. arXiv:astro-ph/0211499 [astro-ph]

Oguri M, Marshall PJ (2010) Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon Not R Astron Soc 405(4):2579–2593. https://doi.org/10.1111/j.1365-2966.2010.16639.x. arXiv:1001.2037 [astro-ph.CO]

Oguri M, Inada N, Pindor B, Strauss MA, Richards GT, Hennawi JF, Turner EL, Lupton RH, Schneider DP, Fukugita M, Brinkmann J (2006) The Sloan Digital Sky Survey quasar lens search. I. Candidate selection algorithm. Astrophys J 132(3):999–1013. https://doi.org/10.1086/506019. arXiv:astro-ph/0605571 [astro-ph]

Oh SP, Mack KJ (2003) Foregrounds for 21cm observations of neutral gas at high redshift. Mon Not R Astron Soc 346:871. https://doi.org/10.1111/j.1365-2966.2003.07133.x. arXiv:astro-ph/0302099

Olivari LC, Dickinson C, Battye RA, Ma YZ, Costa AA, Remazeilles M, Harper S (2018) Cosmological parameter forecasts for HI intensity mapping experiments using the angular power spectrum. Mon Not R Astron Soc 473(3):4242–4256. https://doi.org/10.1093/mnras/stx2621. arXiv:1707.07647 [astro-ph.CO]

O’Malley EM, Gilligan C, Chaboyer B (2017) Absolute ages and distances of 22 GCs using Monte Carlo main-sequence fitting. Astrophys J 838(2):162. https://doi.org/10.3847/1538-4357/aa6574. arXiv:1703.01915 [astro-ph.SR]

Onodera M, Renzini A, Carollo M, Cappellari M, Mancini C, Strazzullo V, Daddi E, Arimoto N, Gobat R, Yamada Y, McCracken HJ, Ilbert O, Capak P, Cimatti A, Giavalisco M, Koekemoer AM, Kong X, Lilly S, Motohara K, Ohta K, Sanders DB, Scoville N, Tamura N, Taniguchi Y (2012) Deep near-infrared spectroscopy of passively evolving galaxies at $$z \gtrsim 1.4$$. Astrophys J 755(1):26. https://doi.org/10.1088/0004-637X/755/1/26. arXiv:1206.1540 [astro-ph.CO]

Onodera M, Carollo CM, Renzini A, Cappellari M, Mancini C, Arimoto N, Daddi E, Gobat R, Strazzullo V, Tacchella S, Yamada Y (2015) The ages, metallicities, and element abundance ratios of massive quenched galaxies at z$$\ge $$1.6. Astrophys J 808:161. https://doi.org/10.1088/0004-637X/808/2/161. arXiv:1411.5023

Ostriker JP, Steinhardt PJ (1995) The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377(6550):600–602. https://doi.org/10.1038/377600a0

Pacifici C, Kassin SA, Weiner BJ, Holden B, Gardner JP, Faber SM, Ferguson HC, Koo DC, Primack JR, Bell EF, Dekel A, Gawiser E, Giavalisco M, Rafelski M, Simons RC, Barro G, Croton DJ, Davé R, Fontana A, Grogin NA, Koekemoer AM, Lee SK, Salmon B, Somerville R, Behroozi P (2016) The evolution of star formation histories of quiescent galaxies. Astrophys J 832(1):79. https://doi.org/10.3847/0004-637X/832/1/79. arXiv:1609.03572 [astro-ph.GA]

Padilla ND, Ceccarelli L, Lambas DG (2005) Spatial and dynamical properties of voids in a $$\Lambda $$ cold dark matter universe. Mon Not R Astron Soc 363(3):977–990. https://doi.org/10.1111/j.1365-2966.2005.09500.x. arXiv:astro-ph/0508297 [astro-ph]

Padmanabhan H, Choudhury TR, Refregier A (2016) Modelling the cosmic neutral hydrogen from DLAs and 21 cm observations. Mon Not R Astron Soc 458(1):781–788. https://doi.org/10.1093/mnras/stw353. arXiv:1505.00008 [astro-ph.CO]

Padmanabhan H, Refregier A, Amara A (2017) A halo model for cosmological neutral hydrogen: abundances and clustering H i abundances and clustering. Mon Not R Astron Soc 469(2):2323–2334. https://doi.org/10.1093/mnras/stx979. arXiv:1611.06235 [astro-ph.CO]

Padmanabhan H, Refregier A, Amara A (2019) Impact of astrophysics on cosmology forecasts for 21 cm surveys. Mon Not R Astron Soc 485(3):4060–4070. https://doi.org/10.1093/mnras/stz683. arXiv:1804.10627 [astro-ph.CO]

Padoan P, Jimenez R (1997) Ages of globular clusters: breaking the age-distance degeneracy with the luminosity function. Astrophys J 475(2):580–583. https://doi.org/10.1086/303582. arXiv:astro-ph/9603060 [astro-ph]

Paech K, Hamaus N, Hoyle B, Costanzi M, Giannantonio T, Hagstotz S, Sauerwein G, Weller J (2017) Cross-correlation of galaxies and galaxy clusters in the Sloan Digital Sky Survey and the importance of non-Poissonian shot noise. Mon Not R Astron Soc 470(3):2566–2577. https://doi.org/10.1093/mnras/stx1354. arXiv:1612.02018 [astro-ph.CO]

Paillas E, Cautun M, Li B, Cai YC, Padilla N, Armijo J, Bose S (2019) The Santiago-Harvard-Edinburgh-Durham void comparison II: unveiling the Vainshtein screening using weak lensing. Mon Not R Astron Soc 484(1):1149–1165. https://doi.org/10.1093/mnras/stz022. arXiv:1810.02864 [astro-ph.CO]

Paillas E, Cai YC, Padilla N, Sánchez AG (2021) Redshift-space distortions with split densities. Mon Not R Astron Soc 505(4):5731–5752. https://doi.org/10.1093/mnras/stab1654. arXiv:2101.09854 [astro-ph.CO]

Palmese A, Kim AG (2021) Probing gravity and growth of structure with gravitational waves and galaxies’ peculiar velocity. Phys Rev D 103(10):103507. https://doi.org/10.1103/PhysRevD.103.103507. arXiv:2005.04325 [astro-ph.CO]

Palmese A, deVicente J, Pereira MES, Annis J, Hartley W, Herner K, Soares-Santos M, Crocce M, Huterer D, Magaña Hernandez I et al (2020) A statistical standard siren measurement of the Hubble constant from the LIGO/Virgo gravitational wave compact object merger GW190814 and Dark Energy Survey galaxies. Astrophys J Lett 900(2):L33. https://doi.org/10.3847/2041-8213/abaeff. arXiv:2006.14961 [astro-ph.CO]

Palmese A, Bom CR, Mucesh S, Hartley WG (2021) A standard siren measurement of the Hubble constant using gravitational wave events from the first three LIGO/Virgo observing runs and the DESI Legacy Survey. arXiv e-prints arXiv:2111.06445 [astro-ph.CO]

Palmese A, Fishbach M, Burke CJ, Annis JT, Liu X (2021) Do LIGO/Virgo black hole mergers produce AGN flares? The case of GW190521 and prospects for reaching a confident association. Astrophys J Lett 914(2):L34. https://doi.org/10.3847/2041-8213/ac0883. arXiv:2103.16069 [astro-ph.HE]

Pan DC, Vogeley MS, Hoyle F, Choi YY, Park C (2012) Cosmic voids in Sloan Digital Sky Survey data release 7. Mon Not R Astron Soc 421(2):926–934. https://doi.org/10.1111/j.1365-2966.2011.20197.x. arXiv:1103.4156 [astro-ph.CO]

Panchal RR, Pisani A, Spergel DN (2020) How do galaxy properties affect void statistics? Astrophys J 901(1):87. https://doi.org/10.3847/1538-4357/abadff. arXiv:2009.14751 [astro-ph.CO]

Paraficz D, Hjorth J (2009) Gravitational lenses as cosmic rulers: $$\Omega $$$$_{m}$$, $$\Omega $$$$_{{\Lambda }}$$ from time delays and velocity dispersions. Astron Astrophys 507(3):L49–L52. https://doi.org/10.1051/0004-6361/200913307. arXiv:0910.5823 [astro-ph.CO]

Paranjape A, Lam TY, Sheth RK (2012) A hierarchy of voids: more ado about nothing. Mon Not R Astron Soc 420(2):1648–1655. https://doi.org/10.1111/j.1365-2966.2011.20154.x. arXiv:1106.2041 [astro-ph.CO]

Pardo K, Fishbach M, Holz DE, Spergel DN (2018) Limits on the number of spacetime dimensions from GW170817. JCAP 7:048. https://doi.org/10.1088/1475-7516/2018/07/048. arXiv:1801.08160 [gr-qc]

Park Y, Rozo E (2020) Concordance cosmology? Mon Not R Astron Soc 499(4):4638–4645. https://doi.org/10.1093/mnras/staa2647. arXiv:1907.05798 [astro-ph.CO]

Patiri SG, Prada F, Holtzman J, Klypin A, Betancort-Rijo J (2006) The properties of galaxies in voids. Mon Not R Astron Soc 372(4):1710–1720. https://doi.org/10.1111/j.1365-2966.2006.10975.x. arXiv:astro-ph/0605703 [astro-ph]

Paul S, Santos MG, Townsend J, Jarvis MJ, Maddox N, Collier JD, Frank BS, Taylor R (2021) H i intensity mapping with the MIGHTEE survey: power spectrum estimates. Mon Not R Astron Soc 505(2):2039–2050. https://doi.org/10.1093/mnras/stab1089. arXiv:2009.13550 [astro-ph.CO]

Paz D, Lares M, Ceccarelli L, Padilla N, Lambas DG (2013) Clues on void evolution—II. Measuring density and velocity profiles on SDSS galaxy redshift space distortions. Mon Not R Astron Soc 436:3480–3491. https://doi.org/10.1093/mnras/stt1836. arXiv:1306.5799

Peebles PJE (1980) The large-scale structure of the universe. Princeton University Press, Princeton

Pe’er A (2015) Physics of gamma-ray bursts prompt emission. Adv Astron 2015:907321. https://doi.org/10.1155/2015/907321. arXiv:1504.02626 [astro-ph.HE]

Peng Yj, Lilly SJ, Kovač K, Bolzonella M, Pozzetti L, Renzini A, Zamorani G, Ilbert O, Knobel C et al (2010) Mass and environment as drivers of galaxy evolution in SDSS and zCOSMOS and the origin of the Schechter function. Astrophys J 721(1):193–221. https://doi.org/10.1088/0004-637X/721/1/193. arXiv:1003.4747 [astro-ph.CO]

Percival WJ, Baugh CM, Bland-Hawthorn J, Bridges T, Cannon R, Cole S, Colless M, Collins C, Couch W, Dalton G, De Propris R, Driver SP, Efstathiou G, Ellis RS, Frenk CS, Glazebrook K, Jackson C, Lahav O, Lewis I, Lumsden S, Maddox S, Moody S, Norberg P, Peacock JA, Peterson BA, Sutherland W, Taylor K (2001) The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. Mon Not R Astron Soc 327(4):1297–1306. https://doi.org/10.1046/j.1365-8711.2001.04827.x. arXiv:astro-ph/0105252 [astro-ph]

Perico ELD, Voivodic R, Lima M, Mota DF (2019) Cosmic voids in modified gravity scenarios. Astron Astrophys 632:A52. https://doi.org/10.1051/0004-6361/201935949

Perlick V, Tsupko OY (2022) Calculating black hole shadows: review of analytical studies. Phys Rep 947:1–39. https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101 [gr-qc]

Perlmutter S, Aldering G, della Valle M, Deustua S, Ellis RS, Fabbro S, Fruchter A, Goldhaber G, Groom DE, Hook IM, Kim AG, Kim MY, Knop RA, Lidman C, McMahon RG, Nugent P, Pain R, Panagia N, Pennypacker CR, Ruiz-Lapuente P, Schaefer B, Walton N (1998) Discovery of a supernova explosion at half the age of the Universe. Nature 391(6662):51–54. https://doi.org/10.1038/34124. arXiv:astro-ph/9712212 [astro-ph]

Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, Fabbro S, others, (The Supernova Cosmology Project) (1999) Measurements of $$\Omega $$ and $$\Lambda $$ from 42 High-Redshift Supernovae. Astrophys J 517(2):565–586. https://doi.org/10.1086/307221. arXiv:astro-ph/9812133 [astro-ph]

Peterson JB, Aleksan R, Ansari R, Bandura K, Bond D, Bunton J, Carlson K, Chang TC, DeJongh F, Dobbs M, Dodelson S, Darhmaoui H, Gnedin N, Halpern M, Hogan C, Le Goff JM, Liu TT, Legrouri A, Loeb A, Loudiyi K, Magneville C, Marriner J, McGinnis DP, McWilliams B, Moniez M, Palanque-Delabruille N, Pasquinelli RJ, Pen UL, Rich J, Scarpine V, Seo HJ, Sigurdson K, Seljak U, Stebbins A, Steffen JH, Stoughton C, Timbie PT, Vallinotto A, Teche C (2009) 21-cm intensity mapping. In: Astro2010: the astronomy and astrophysics decadal survey, p 234. arXiv:0902.3091 [astro-ph.IM]

Petrillo CE, Tortora C, Chatterjee S, Vernardos G, Koopmans LVE, Verdoes Kleijn G, Napolitano NR, Covone G, Schneider P, Grado A, McFarland J (2017) Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks. Mon Not R Astron Soc 472(1):1129–1150. https://doi.org/10.1093/mnras/stx2052. arXiv:1702.07675 [astro-ph.GA]

Philcox OHE, Massara E, Spergel DN (2020) What does the marked power spectrum measure? Insights from perturbation theory. Phys Rev D 102(4):043516. https://doi.org/10.1103/PhysRevD.102.043516. arXiv:2006.10055 [astro-ph.CO]

Phillips MM (1993) The absolute magnitudes of Type Ia Supernovae. Astrophys J Lett 413:L105. https://doi.org/10.1086/186970

Pietrzyński G, Graczyk D, Gallenne A, Gieren W, Thompson IB, Pilecki B, Karczmarek P, Górski M, Suchomska K, Taormina M, Zgirski B, Wielgórski P, Kołaczkowski Z, Konorski P, Villanova S, Nardetto N, Kervella P, Bresolin F, Kudritzki RP, Storm J, Smolec R, Narloch W (2019) A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567(7747):200–203. https://doi.org/10.1038/s41586-019-0999-4. arXiv:1903.08096 [astro-ph.GA]

Piotto G, King IR, Djorgovski SG, Sosin C, Zoccali M, Saviane I, De Angeli F, Riello M, Recio-Blanco A, Rich RM, Meylan G, Renzini A (2002) HST color-magnitude diagrams of 74 galactic globular clusters in the HST F439W and F555W bands. Astron Astrophys 391:945–965. https://doi.org/10.1051/0004-6361:20020820. arXiv:astro-ph/0207124 [astro-ph]

Pisani A, Lavaux G, Sutter PM, Wandelt BD (2014) Real-space density profile reconstruction of stacked voids. Mon Not R Astron Soc 443(4):3238–3250. https://doi.org/10.1093/mnras/stu1399. arXiv:1306.3052 [astro-ph.CO]

Pisani A, Sutter PM, Hamaus N, Alizadeh E, Biswas R, Wandelt BD, Hirata CM (2015a) Counting voids to probe dark energy. Phys Rev D 92(8):083531. https://doi.org/10.1103/PhysRevD.92.083531. arXiv:1503.07690 [astro-ph.CO]

Pisani A, Sutter PM, Wandelt BD (2015b) Mastering the effects of peculiar velocities in cosmic voids. ArXiv e-prints arXiv:1506.07982

Pisani A, Massara E, Spergel DN, Alonso D, Baker T, Cai YC, Cautun M, Davies C, Demchenko V, Doré O, Goulding A, Habouzit M, Hamaus N, Hawken A, Hirata CM, Ho S, Jain B, Kreisch CD, Marulli F, Padilla N, Pollina G, Sahlén M, Sheth RK, Somerville R, Szapudi I, van de Weygaert R, Villaescusa-Navarro F, Wandelt BD, Wang Y (2019) Cosmic voids: a novel probe to shed light on our Universe. BAAS 51(3):40 arXiv:1903.05161 [astro-ph.CO]

Planck Collaboration, Ade PAR et al (2014a) Planck 2013 results. XIX. The integrated Sachs-Wolfe effect. Astron Astrophys 571:A19. https://doi.org/10.1051/0004-6361/201321526. arXiv:1303.5079 [astro-ph.CO]

Planck Collaboration, Ade PAR et al (2014b) Planck 2013 results. XVI. Cosmological parameters. Astron Astrophys 571:A16. https://doi.org/10.1051/0004-6361/201321591. arXiv:1303.5076 [astro-ph.CO]

Planck Collaboration, Ade PAR, Aghanim N, Arnaud M et al (2015) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589

Planck Collaboration, Aghanim N et al (2020) Planck 2018 results. VI. Cosmological parameters. Astron Astrophys 641:A6. https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]

Platen E, van de Weygaert R, Jones BJT (2007) A cosmic watershed: the WVF void detection technique. Mon Not R Astron Soc 380(2):551–570. https://doi.org/10.1111/j.1365-2966.2007.12125.x. arXiv:0706.2788 [astro-ph]

Pollina G, Baldi M, Marulli F, Moscardini L (2016) Cosmic voids in coupled dark energy cosmologies: the impact of halo bias. Mon Not R Astron Soc 455(3):3075–3085. https://doi.org/10.1093/mnras/stv2503. arXiv:1506.08831 [astro-ph.CO]

Pollina G, Hamaus N, Dolag K, Weller J, Baldi M, Moscardini L (2017) On the linearity of tracer bias around voids. Mon Not R Astron Soc 469(1):787–799. https://doi.org/10.1093/mnras/stx785. arXiv:1610.06176 [astro-ph.CO]

Pollina G, Hamaus N, Paech K, Dolag K, Weller J, Sánchez C, Rykoff ES, Jain B, Abbott TMC, Allam S, Avila S, Bernstein RA, Bertin E, Collaboration DES et al (2019) On the relative bias of void tracers in the Dark Energy Survey. Mon Not R Astron Soc 487(2):2836–2852. https://doi.org/10.1093/mnras/stz1470. arXiv:1806.06860 [astro-ph.CO]

Porqueres N, Jasche J, Lavaux G, Enßlin T (2019) Inferring high-redshift large-scale structure dynamics from the Lyman-$$\alpha $$ forest. Astron Astrophys 630:A151. https://doi.org/10.1051/0004-6361/201936245. arXiv:1907.02973 [astro-ph.CO]

Postman M, Coe D, Benítez N, Bradley L, Broadhurst T, Donahue M, Ford H, Graur O, Graves G, Jouvel S, Koekemoer A et al (2012) The cluster lensing and supernova survey with hubble: an overview. Astrophys J Suppl 199(2):25. https://doi.org/10.1088/0067-0049/199/2/25. arXiv:1106.3328 [astro-ph.CO]

Pourtsidou A, Metcalf RB (2014) Weak lensing with 21cm intensity mapping at $$z \sim 2-3$$. Mon Not R Astron Soc 439:L36–L40. https://doi.org/10.1093/mnrasl/slt175. arXiv:1311.4484 [astro-ph.CO]

Pourtsidou A, Bacon D, Crittenden R, Metcalf RB (2016) Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys. Mon Not R Astron Soc 459(1):863–870. https://doi.org/10.1093/mnras/stw658. arXiv:1509.03286 [astro-ph.CO]

Pourtsidou A, Bacon D, Crittenden R (2017) HI and cosmological constraints from intensity mapping, optical and CMB surveys. Mon Not R Astron Soc 470(4):4251–4260. https://doi.org/10.1093/mnras/stx1479. arXiv:1610.04189 [astro-ph.CO]

Pozzetti L, Mannucci F (2000) Extremely red galaxies: age and dust degeneracy solved? Mon Not R Astron Soc 317(1):L17–L21. https://doi.org/10.1046/j.1365-8711.2000.03829.x. arXiv:astro-ph/0006430 [astro-ph]

Pozzetti L, Bolzonella M, Zucca E, Zamorani G, Lilly S, Renzini A, Moresco M, Mignoli M, Cassata P, Tasca L, Lamareille F, Maier C et al (2010) zCOSMOS—10k-bright spectroscopic sample. The bimodality in the galaxy stellar mass function: exploring its evolution with redshift. Astron Astrophys 523:A13. https://doi.org/10.1051/0004-6361/200913020. arXiv:0907.5416 [astro-ph.CO]

Predehl P (2012) eROSITA. In: Space telescopes and instrumentation 2012: ultraviolet to Gamma Ray. Proc SPIE, vol 8443, p 84431R. https://doi.org/10.1117/12.925843

Punturo M, Abernathy M, Acernese F, Allen B, Andersson N, Arun K, Barone F, Barr B, Barsuglia M, Beker M, Beveridge N, Birindelli S, Bose S, Bosi L, Braccini S, Bradaschia C, Bulik T, Calloni E, Cella G, Chassande Mottin E et al (2010) The Einstein Telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27(19):194002. https://doi.org/10.1088/0264-9381/27/19/194002

Qin F, Howlett C, Staveley-Smith L (2019) The redshift-space momentum power spectrum—II. Measuring the growth rate from the combined 2MTF and 6dFGSv surveys. Mon Not R Astron Soc 487(4):5235–5247. https://doi.org/10.1093/mnras/stz1576. arXiv:1906.02874 [astro-ph.CO]

Quartin M, Amendola L (2010) Distinguishing between void models and dark energy with cosmic parallax and redshift drift. Phys Rev D 81(4):043522. https://doi.org/10.1103/PhysRevD.81.043522. arXiv:0909.4954 [astro-ph.CO]

Quartin M, Marra V, Amendola L (2014) Accurate weak lensing of standard candles. II. Measuring sigma8 with Supernovae. PhysRev D 89:023009. https://doi.org/10.1103/PhysRevD.89.023009. arXiv:1307.1155 [astro-ph.CO]

Quartin M, Amendola L, Moraes B (2022) The 6 $$\times $$ 2pt method: supernova velocities meet multiple tracers. Mon Not R Astron Soc 512(2):2841–2853. https://doi.org/10.1093/mnras/stac571. arXiv:2111.05185 [astro-ph.CO]

Raichoor A, de Mattia A, Ross AJ, Zhao C, Alam S, Avila S, Bautista J, Brinkmann J et al (2021) The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: large-scale structure catalogues and measurement of the isotropic BAO between redshift 0.6 and 1.1 for the Emission Line Galaxy Sample. Mon Not R Astron Soc 500(3):3254–3274. https://doi.org/10.1093/mnras/staa3336. arXiv:2007.09007 [astro-ph.CO]

Raimondo G (2009) Joint analysis of near-infrared properties and surface brightness fluctuations of large Magellanic cloud star clusters. Astrophys J 700(2):1247–1261. https://doi.org/10.1088/0004-637X/700/2/1247. arXiv:0907.1408 [astro-ph.GA]

Raimondo G, Brocato E, Cantiello M, Capaccioli M (2005) New optical and near-infrared surface brightness fluctuation models. II. Young and intermediate-age stellar populations. Astrophys J 130(6):2625–2646. https://doi.org/10.1086/497591. arXiv:astro-ph/0509020 [astro-ph]

Rakavy G, Shaviv G, Zinamon Z (1967) Carbon and oxygen burning stars and pre-supernova models. Astrophys J 150:131. https://doi.org/10.1086/149318

Räsänen S, Bolejko K, Finoguenov A (2015) New Test of the Friedmann-Lemaître-Robertson-Walker Metric Using the Distance Sum Rule. Phys Rev Lett 115(10):101301. https://doi.org/10.1103/PhysRevLett.115.101301. arXiv:1412.4976 [astro-ph.CO]

Rathna Kumar S, Tewes M, Stalin CS, Courbin F, Asfandiyarov I, Meylan G, Eulaers E, Prabhu TP, Magain P, Van Winckel H, Ehgamberdiev S (2013) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIV. Time delay of the doubly lensed quasar SDSS J1001+5027. Astron Astrophys 557:A44. https://doi.org/10.1051/0004-6361/201322116. arXiv:1306.5105 [astro-ph.CO]

Ratsimbazafy AL, Loubser SI, Crawford SM, Cress CM, Bassett BA, Nichol RC, Väisänen P (2017) Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope. ArXiv e-prints arXiv:1702.00418

Read JI, Saha P, Macciò AV (2007) Radial density profiles of time-delay lensing galaxies. Astrophys J 667(2):645–654. https://doi.org/10.1086/520714. arXiv:0704.3267 [astro-ph]

Reed DS, Schneider A, Smith RE, Potter D, Stadel J, Moore B (2015) The same with less: the cosmic web of warm versus cold dark matter dwarf galaxies. Mon Not R Astron Soc 451(4):4413–4423. https://doi.org/10.1093/mnras/stv1233. arXiv:1410.1541 [astro-ph.CO]

Refsdal S (1964) On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. Mon Not R Astron Soc 128:307. https://doi.org/10.1093/mnras/128.4.307

Reichart DE, Lamb DQ, Fenimore EE, Ramirez-Ruiz E, Cline TL, Hurley K (2001) A possible cepheid-like luminosity estimator for the long gamma-ray bursts. Astrophys J 552(1):57–71. https://doi.org/10.1086/320434. arXiv:astro-ph/0004302 [astro-ph]

Reitze D, Adhikari RX, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown DA, Chen Y, Coyne D, Eisenstein R, Evans M, Fritschel P, Hall ED, Lazzarini A, Lovelace G, Read J, Sathyaprakash BS, Shoemaker D, Smith J, Torrie C, Vitale S, Weiss R, Wipf C, Zucker M (2019) Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull Am Astron Soc 51:35 arXiv:1907.04833 [astro-ph.IM]

Renzi F, Martinelli M (2022) Climbing out of the shadows: building the distance ladder with black hole images. Phys Dark Univ 37:101104. https://doi.org/10.1016/j.dark.2022.101104. arXiv:2205.03396 [astro-ph.CO]

Renzi F, Hogg NB, Giarè W (2021) The resilience of the Etherington–Hubble relation. arXiv e-prints arXiv:2112.05701

Renzini A (2006) Stellar population diagnostics of elliptical galaxy formation. Annu Rev Astron Astrophys 44(1):141–192. https://doi.org/10.1146/annurev.astro.44.051905.092450. arXiv:astro-ph/0603479 [astro-ph]

Reyes M, Escamilla-Rivera C (2021) Improving data-driven model-independent reconstructions and updated constraints on dark energy models from Horndeski cosmology. JCAP 7:048. https://doi.org/10.1088/1475-7516/2021/07/048. arXiv:2104.04484 [astro-ph.CO]

Ricciardelli E, Cava A, Varela J, Quilis V (2014a) The star formation activity in cosmic voids. Mon Not R Astron Soc 445(4):4045–4054. https://doi.org/10.1093/mnras/stu2061. arXiv:1410.0023 [astro-ph.GA]

Ricciardelli E, Quilis V, Varela J (2014b) On the universality of void density profiles. Mon Not R Astron Soc 440(1):601–609. https://doi.org/10.1093/mnras/stu307. arXiv:1402.2976 [astro-ph.CO]

Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland RL, Hogan CJ, Jha S, Kirshner RP, Leibundgut B, Phillips MM, Reiss D, Schmidt BP, Schommer RA, Smith RC, Spyromilio J, Stubbs C, Suntzeff NB, Tonry J (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astrophys J 116(3):1009–1038. https://doi.org/10.1086/300499. arXiv:astro-ph/9805201 [astro-ph]

Riess AG, Macri L, Casertano S, Lampeit H, Ferguson HC, Filippenko AV, Jha SW, Li W, Chornock R, Silverman JM (2011) Erratum: “A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and wide field camera 3” (2011, ApJ, 730, 119). Astrophys J 732(2):129. https://doi.org/10.1088/0004-637X/732/2/129

Riess AG, Macri LM, Hoffmann SL, Scolnic D, Casertano S, Filippenko AV, Tucker BE, Reid MJ, Jones DO, Silverman JM, Chornock R, Challis P, Yuan W, Brown PJ, Foley RJ (2016) A 2.4% determination of the local value of the Hubble constant. Astrophys J 826(1):56. https://doi.org/10.3847/0004-637X/826/1/56. arXiv:1604.01424 [astro-ph.CO]

Riess AG, Rodney SA, Scolnic DM, Shafer DL, Strolger LG, Ferguson HC, Postman M, Graur O, Maoz D, Jha SW, Mobasher B, Casertano S, Hayden B, Molino A, Hjorth J, Garnavich PM, Jones DO, Kirshner RP, Koekemoer AM, Grogin NA, Brammer G, Hemmati S, Dickinson M, Challis PM, Wolff S, Clubb KI, Filippenko AV, Nayyeri H, Vivian U, Koo DC, Faber SM, Kocevski D, Bradley L, Coe D (2018) Type Ia Supernova distances at redshift $$>1.5$$ from the Hubble Space Telescope multi-cycle treasury programs: the early expansion rate. Astrophys J 853(2):126. https://doi.org/10.3847/1538-4357/aaa5a9. arXiv:1710.00844 [astro-ph.CO]

Riess AG, Casertano S, Yuan W, Macri LM, Scolnic D (2019) Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond $$\Lambda $$CDM. Astrophys J 876(1):85. https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603 [astro-ph.CO]

Riess AG, Yuan W, Casertano S, Macri LM, Scolnic D (2020) The accuracy of the Hubble constant measurement verified through cepheid amplitudes. Astrophys J Lett 896(2):L43. https://doi.org/10.3847/2041-8213/ab9900. arXiv:2005.02445 [astro-ph.CO]

Riess AG, Casertano S, Yuan W, Bowers JB, Macri L, Zinn JC, Scolnic D (2021) Cosmic distances calibrated to 1% precision with Gaia EDR3 parallaxes and Hubble Space Telescope photometry of 75 milky way cepheids confirm tension with $$\Lambda $$CDM. Astrophys J Lett 908(1):L6. https://doi.org/10.3847/2041-8213/abdbaf. arXiv:2012.08534 [astro-ph.CO]

Riess AG, Yuan W, Macri LM, Scolnic D, Brout D, Casertano S, Jones DO, Murakami Y, Anand GS, Breuval L, Brink TG, Filippenko AV, Hoffmann S, Jha SW, D’arcy Kenworthy W, Mackenty J, Stahl BE, Zheng W (2022) A comprehensive measurement of the local value of the Hubble constant with 1 km s$$^{-1}$$ Mpc$$^{-1}$$ uncertainty from the Hubble Space Telescope and the SH0ES team. Astrophys J Lett 934(1):L7. https://doi.org/10.3847/2041-8213/ac5c5b. arXiv:2112.04510 [astro-ph.CO]

Riess AG et al (2004) Type Ia Supernova discoveries at $$z>1$$ from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys J 607:665–687. arXiv:astro-ph/0402512

Risaliti G, Lusso E (2015) A Hubble diagram for quasars. Astrophys J 815:33. https://doi.org/10.1088/0004-637X/815/1/33. arXiv:1505.07118

Risaliti G, Lusso E (2019) Cosmological constraints from the Hubble diagram of quasars at high redshifts. Nat Astron. https://doi.org/10.1038/s41550-018-0657-z

Rodney SA, Brammer GB, Pierel JDR, Richard J, Toft S, O’Connor KF, Akhshik M, Whitaker KE (2021) A gravitationally lensed supernova with an observable two-decade time delay. Nature Astron https://doi.org/10.1038/s41550-021-01450-9. arXiv:2106.08935 [astro-ph.CO]

Romanowsky AJ, Kochanek CS (1999) Constraints on H$$_{0}$$ from the central velocity dispersions of lens galaxies. Astrophys J 516(1):18–26. https://doi.org/10.1086/307077. arXiv:astro-ph/9805080 [astro-ph]

Ronconi T, Marulli F (2017) Cosmological exploitation of cosmic void statistics. New numerical tools in the CosmoBolognaLib to extract cosmological constraints from the void size function. Astron Astrophys 607:A24. https://doi.org/10.1051/0004-6361/201730852. arXiv:1703.07848 [astro-ph.CO]

Ronconi T, Contarini S, Marulli F, Baldi M, Moscardini L (2019) Cosmic voids uncovered—first-order statistics of depressions in the biased density field. Mon Not R Astron Soc 488(4):5075–5084. https://doi.org/10.1093/mnras/stz2115. arXiv:1902.04585 [astro-ph.CO]

Ruffini R, Izzo L, Muccino M, Pisani GB, Rueda JA, Wang Y, Barbarino C, Bianco CL, Enderli M, Kovacevic M (2014) Induced gravitational collapse at extreme cosmological distances: the case of GRB 090423. Astron Astrophys 569:A39. https://doi.org/10.1051/0004-6361/201423457. arXiv:1404.1840 [astro-ph.HE]

Ruiz AN, Paz DJ, Lares M, Luparello HE, Ceccarelli L, Lambas DG (2015) Clues on void evolution—III. Structure and dynamics in void shells. Mon Not R Astron Soc 448(2):1471–1482. https://doi.org/10.1093/mnras/stv019. arXiv:1501.02120 [astro-ph.CO]

Rusu CE, Fassnacht CD, Sluse D, Hilbert S, Wong KC, Huang KH, Suyu SH, Collett TE, Marshall PJ, Treu T, Koopmans LVE (2017) H0LiCOW—III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435–1223 through weighted galaxy counts. Mon Not R Astron Soc 467(4):4220–4242. https://doi.org/10.1093/mnras/stx285. arXiv:1607.01047 [astro-ph.GA]

Rusu CE, Wong KC, Bonvin V, Sluse D, Suyu SH, Fassnacht CD, Chan JHH, Hilbert S, Auger MW, Sonnenfeld A, Birrer S, Courbin F, Treu T, Chen GCF, Halkola A, Koopmans LVE, Marshall PJ, Shajib AJ (2020) H0LiCOW XII. Lens mass model of WFI2033-4723 and blind measurement of its time-delay distance and H$$_{0}$$. Mon Not R Astron Soc 498(1):1440–1468. https://doi.org/10.1093/mnras/stz3451. arXiv:1905.09338 [astro-ph.CO]

Ryden BS (1995) Measuring Q 0 from the distortion of voids in redshift space. Astrophys J 452:25. https://doi.org/10.1086/176277. arXiv:astro-ph/9506028 [astro-ph]

Ryden BS, Melott AL (1996) Voids in real space and in redshift space. Astrophys J 470:160. https://doi.org/10.1086/177857. arXiv:astro-ph/9510108 [astro-ph]

Sacchi A, Risaliti G, Signorini M, Lusso E, Nardini E, Bargiacchi G, Bisogni S, Civano F, Elvis M, Fabbiano G, Gilli R, Trefoloni B, Vignali C (2022) Quasars as high-redshift standard candles. arXiv e-prints arXiv:2206.13528

Sadler EM, Moss VA, Allison JR, Mahony EK, Whiting MT, Johnston HM, Ellison SL, Lagos CdP, Koribalski BS (2020) A successful search for intervening 21 cm H I absorption in galaxies at $$0.4 < z <1.0$$ with the Australian Square Kilometre Array Pathfinder (ASKAP). Mon Not R Astron Soc 499(3):4293–4311. https://doi.org/10.1093/mnras/staa2390. arXiv:2007.05648 [astro-ph.GA]

Saha P, Williams LLR (2006) Gravitational lensing model degeneracies: is steepness all-important? Astrophys J 653(2):936–941. https://doi.org/10.1086/508798. arXiv:astro-ph/0608496 [astro-ph]

Sahlén M (2019) Cluster-void degeneracy breaking: neutrino properties and dark energy. Phys Rev D 99(6):063525. https://doi.org/10.1103/PhysRevD.99.063525. arXiv:1807.02470 [astro-ph.CO]

Sahlén M, Silk J (2018) Cluster-void degeneracy breaking: modified gravity in the balance. Phys Rev D 97(10):103504. https://doi.org/10.1103/PhysRevD.97.103504. arXiv:1612.06595 [astro-ph.CO]

Sahlén M, Zubeldía Í, Silk J (2016) Cluster-void degeneracy breaking: dark energy, planck, and the largest cluster and void. Astrophys J Lett 820(1):L7. https://doi.org/10.3847/2041-8205/820/1/L7. arXiv:1511.04075 [astro-ph.CO]

Sahlholdt CL, Feltzing S, Lindegren L, Church RP (2019) Benchmark ages for the Gaia benchmark stars. Mon Not R Astron Soc 482(1):895–920. https://doi.org/10.1093/mnras/sty2732. arXiv:1810.02829 [astro-ph.SR]

Sakamoto T, Barthelmy SD, Baumgartner WH, Cummings JR, Fenimore EE, Gehrels N, Krimm HA, Markwardt CB, Palmer DM, Parsons AM, Sato G, Stamatikos M, Tueller J, Ukwatta TN, Zhang B (2011) The second swift burst alert telescope gamma-ray burst catalog. Astrophys J Suppl 195(1):2. https://doi.org/10.1088/0067-0049/195/1/2. arXiv:1104.4689 [astro-ph.HE]

Sakstein J, Jain B (2017) Implications of the neutron star Merger GW170817 for cosmological scalar-tensor theories. Phys Rev Lett 119(25):251303. https://doi.org/10.1103/PhysRevLett.119.251303

Salpeter EE (1955) The luminosity function and Stellar evolution. Astrophys J 121:161. https://doi.org/10.1086/145971

Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297. https://doi.org/10.1016/S0010-4655(02)00280-1

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270. https://doi.org/10.1016/j.cpc.2009.09.018

Salvestrini F, Risaliti G, Bisogni S, Lusso E, Vignali C (2019) Quasars as standard candles II. The non-linear relation between UV and X-ray emission at high redshifts. Astron Astrophys 631:A120. https://doi.org/10.1051/0004-6361/201935491. arXiv:1909.12309 [astro-ph.GA]

Sánchez AG (2020) Arguments against using h$$^{-1}$$ Mpc units in observational cosmology. Phys Rev D 102(12):123511. https://doi.org/10.1103/PhysRevD.102.123511. arXiv:2002.07829 [astro-ph.CO]

Sánchez C, Clampitt J, Kovacs A, Jain B, García-Bellido J, Nadathur S, Gruen D, Hamaus N, Huterer D, Vielzeuf P, Amara A, Collaboration DES et al (2017) Cosmic voids and void lensing in the Dark Energy Survey Science Verification data. Mon Not R Astron Soc 465(1):746–759. https://doi.org/10.1093/mnras/stw2745. arXiv:1605.03982 [astro-ph.CO]

Sánchez-Blázquez P, Peletier RF, Jiménez-Vicente J, Cardiel N, Cenarro AJ, Falcón-Barroso J, Gorgas J, Selam S, Vazdekis A (2006) Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon Not R Astron Soc 371(2):703–718. https://doi.org/10.1111/j.1365-2966.2006.10699.x. arXiv:astro-ph/0607009 [astro-ph]

Sandage A (1962) The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. ApJ 136:319. https://doi.org/10.1086/147385

Sandage AR, Schwarzschild M (1952) Inhomogeneous Stellar models. II. Models with exhausted cores in gravitational contraction. Astrophys J 116:463. https://doi.org/10.1086/145638

Santos MG, Cooray A, Knox L (2005) Multifrequency analysis of 21 cm fluctuations from the era of reionization. Astrophys J 625:575–587. https://doi.org/10.1086/429857. arXiv:astro-ph/0408515

Santos MG et al (2015) Cosmology from a SKA HI intensity mapping survey. PoS AASKA14:019. https://doi.org/10.22323/1.215.0019. arXiv:1501.03989 [astro-ph.CO]

Santos MG et al (2017) MeerKLASS: MeerKAT large area synoptic survey. In: MeerKAT science: on the pathway to the SKA. arXiv:1709.06099 [astro-ph.CO]

Santos-da-Costa S, Busti VC, Holanda RFL (2015) Two new tests to the distance duality relation with galaxy clusters. JCAP 10:061. https://doi.org/10.1088/1475-7516/2015/10/061. arXiv:1506.00145 [astro-ph.CO]

Sapone D, Majerotto E, Nesseris S (2014) Curvature versus distances: testing the FLRW cosmology. Phys Rev D 90(2):023012. https://doi.org/10.1103/PhysRevD.90.023012. arXiv:1402.2236 [astro-ph.CO]

Saracco P, La Barbera F, Gargiulo A, Mannucci F, Marchesini D, Nonino M, Ciliegi P (2019) Age, metallicity, and star formation history of spheroidal galaxies in cluster at $$z\sim 1.2$$. Mon Not R Astron Soc 484(2):2281–2295. https://doi.org/10.1093/mnras/sty3509. arXiv:1901.01595 [astro-ph.GA]

Sathyaprakash BS, Schutz BF, Van Den Broeck C (2010) Cosmography with the Einstein Telescope. Class Quantum Grav 27(21):215006. https://doi.org/10.1088/0264-9381/27/21/215006. arXiv:0906.4151 [astro-ph.CO]

Scelfo G, Spinelli M, Raccanelli A, Boco L, Lapi A, Viel M (2022) Gravitational waves $$\times $$ HI intensity mapping: cosmological and astrophysical applications. JCAP 1:004. https://doi.org/10.1088/1475-7516/2022/01/004. arXiv:2106.09786 [astro-ph.CO]

Schlegel DJ, Finkbeiner DP, Davis M (1998) Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys J 500:525. https://doi.org/10.1086/305772. arXiv:astro-ph/9710327

Schmidt BP, Suntzeff NB, Phillips MM, Schommer RA, Clocchiatti A, Kirshner RP, Garnavich P, Challis P, Leibundgut B, Spyromilio J, Riess AG, Filippenko AV, Hamuy M, Smith RC, Hogan C, Stubbs C, Diercks A, Reiss D, Gilliland R, Tonry J, Maza J, Dressler A, Walsh J, Ciardullo R (1998) The High-$$z$$ Supernova search: measuring cosmic deceleration and global curvature of the universe using Type Ia Supernovae. Astrophys J 507(1):46–63. https://doi.org/10.1086/306308. arXiv:astro-ph/9805200 [astro-ph]

Schneider P (1985) A new formulation of gravitational lens theory, time-delay, and Fermat’s principle. Astron Astrophys 143(2):413–420

Schneider P, Sluse D (2013) Mass-sheet degeneracy, power-law models and external convergence: impact on the determination of the Hubble constant from gravitational lensing. Astron Astrophys 559:A37. https://doi.org/10.1051/0004-6361/201321882. arXiv:1306.0901 [astro-ph.CO]

Schneider P, Sluse D (2014) Source-position transformation: an approximate invariance in strong gravitational lensing. Astron Astrophys 564:A103. https://doi.org/10.1051/0004-6361/201322106. arXiv:1306.4675 [astro-ph.CO]

Schneider P, Ehlers J, Falco EE (1992) Gravitational lenses. Springer, Berlin. https://doi.org/10.1007/978-3-662-03758-4

Schreiber C, Glazebrook K, Nanayakkara T, Kacprzak GG, Labbé I, Oesch P, Yuan T, Tran KV, Papovich C, Spitler L, Straatman C (2018) Near infrared spectroscopy and star-formation histories of 3 $$\le $$ z $$\le $$ 4 quiescent galaxies. Astron Astrophys 618:A85. https://doi.org/10.1051/0004-6361/201833070. arXiv:1807.02523 [astro-ph.GA]

Schuster N, Hamaus N, Pisani A, Carbone C, Kreisch CD, Pollina G, Weller J (2019) The bias of cosmic voids in the presence of massive neutrinos. JCAP 12:055. https://doi.org/10.1088/1475-7516/2019/12/055. arXiv:1905.00436 [astro-ph.CO]

Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323(6086):310–311. https://doi.org/10.1038/323310a0

Schwarzschild M (1979) A numerical model for a triaxial stellar system in dynamical equilibrium. Astrophys J 232:236–247. https://doi.org/10.1086/157282

Scolnic DM, Jones DO, Rest A, Pan YC, Chornock R, Foley RJ, Huber ME, Kessler R, Narayan G, Riess AG, Rodney S, Berger E, Brout DJ et al (2018) The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys J 859(2):101. https://doi.org/10.3847/1538-4357/aab9bb. arXiv:1710.00845 [astro-ph.CO]

Scovacricchi D, Nichol RC, Macaulay E, Bacon D (2017) Measuring weak lensing correlations of Type Ia Supernovae. Mon Not R Astron Soc 465(3):2862–2872. https://doi.org/10.1093/mnras/stw2878. arXiv:1611.01315 [astro-ph.CO]

Secco LF et al (2022) Dark Energy Survey Year 3 results: cosmology from cosmic shear and robustness to modeling uncertainty. Phys Rev D 105:023515. https://doi.org/10.1103/PhysRevD.105.023515. arXiv:2105.13544 [astro-ph.CO]

Seikel M, Yahya S, Maartens R, Clarkson C (2012) Using H(z) data as a probe of the concordance model. Phys Rev D 86(8):083001. https://doi.org/10.1103/PhysRevD.86.083001. arXiv:1205.3431 [astro-ph.CO]

Seljak U (2009) Extracting primordial non-Gaussianity without cosmic variance. Phys Rev Lett 102:021302. https://doi.org/10.1103/PhysRevLett.102.021302. arXiv:0807.1770 [astro-ph]

Seo HJ, Eisenstein DJ (2003) Probing dark energy with baryonic acoustic oscillations from future large galaxy redshift surveys. Astrophys J 598:720–740. https://doi.org/10.1086/379122. arXiv:astro-ph/0307460 [astro-ph]

Seo HJ, Dodelson S, Marriner J, Mcginnis D, Stebbins A, Stoughton C, Vallinotto A (2010) A ground-based 21cm Baryon acoustic oscillation survey. Astrophys J 721:164–173. https://doi.org/10.1088/0004-637X/721/1/164. arXiv:0910.5007 [astro-ph.CO]

Shajib AJ, Treu T, Agnello A (2018) Improving time-delay cosmography with spatially resolved kinematics. Mon Not R Astron Soc 473(1):210–226. https://doi.org/10.1093/mnras/stx2302. arXiv:1709.01517 [astro-ph.CO]

Shajib AJ, Birrer S, Treu T et al (2020) STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408–5354. Mon Not R Astron Soc 494(4):6072–6102. https://doi.org/10.1093/mnras/staa828. arXiv:1910.06306 [astro-ph.CO]

Shajib AJ, Treu T, Birrer S, Sonnenfeld A (2021) Dark matter haloes of massive elliptical galaxies at z $$\sim $$ 0.2 are well described by the Navarro-Frenk-White profile. Mon Not R Astron Soc 503(2):2380–2405. https://doi.org/10.1093/mnras/stab536. arXiv:2008.11724 [astro-ph.GA]

Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 500:33–51

Shaw JR, Sigurdson K, Sitwell M, Stebbins A, Pen UL (2015) Coaxing cosmic 21 cm fluctuations from the polarized sky using m-mode analysis. Phys Rev D 91(8):083514. https://doi.org/10.1103/PhysRevD.91.083514. arXiv:1401.2095 [astro-ph.CO]

Sheth RK (2005) The halo-model description of marked statistics. Mon Not R Astron Soc 364(3):796–806. https://doi.org/10.1111/j.1365-2966.2005.09609.x. arXiv:astro-ph/0511772 [astro-ph]

Sheth RK, van de Weygaert R (2004) A hierarchy of voids: much ado about nothing. Mon Not R Astron Soc 350:517–538. https://doi.org/10.1111/j.1365-2966.2004.07661.x. arXiv:astro-ph/0311260

Shim J, Park C, Kim J, Hwang HS (2021) Identification of cosmic voids as massive cluster counterparts. Astrophys J 908(2):211. https://doi.org/10.3847/1538-4357/abd0f6. arXiv:2012.03511 [astro-ph.CO]

Shirokov SI, Sokolov IV, Lovyagin NY, Amati L, Baryshev YV, Sokolov VV, Gorokhov VL (2020) High-redshift long gamma-ray bursts Hubble diagram as a test of basic cosmological relations. Mon Not R Astron Soc 496(2):1530–1544. https://doi.org/10.1093/mnras/staa1548. arXiv:2006.00981 [astro-ph.CO]

Si SK, Qi YQ, Xue FX, Liu YJ, Wu X, Yi SX, Tang QW, Zou YC, Wang FF, Wang XG (2018) The three-parameter correlations about the optical plateaus of gamma-ray bursts. Astrophys J 863(1):50. https://doi.org/10.3847/1538-4357/aad08a. arXiv:1807.00241 [astro-ph.HE]

Simon J, Verde L, Jimenez R (2005) Constraints on the redshift dependence of the dark energy potential. Phys Rev D 71(12):123001. https://doi.org/10.1103/PhysRevD.71.123001. arXiv:astro-ph/0412269 [astro-ph]

SKA Cosmology SWG (2020) Cosmology with Phase 1 of the Square Kilometre Array: Red Book 2018: Technical specifications and performance forecasts. Publ Astron Soc Austral 37:e007. https://doi.org/10.1017/pasa.2019.51. arXiv:1811.02743 [astro-ph.CO]

Skrutskie MF, Cutri RM, Stiening R, Weinberg MD, Schneider S, Carpenter JM, Beichman C, Capps R, Chester T, Elias J, Huchra J, Liebert J, Lonsdale C, Monet DG, Price S, Seitzer P, Jarrett T, Kirkpatrick JD, Gizis JE, Howard E, Evans T, Fowler J, Fullmer L, Hurt R, Light R, Kopan EL, Marsh KA, McCallon HL, Tam R, Van Dyk S, Wheelock S (2006) The Two Micron All Sky Survey (2MASS). Astrophys J 131(2):1163–1183. https://doi.org/10.1086/498708

Slosar A, Ahmed Z, Alonso D, Amin MA, Arena EJ, Bandura K, Battaglia N, Blazek J, Bull P, Castorina E, Chang TC, Connor L, Davé R, Dvorkin C, van Engelen A, Ferraro S et al (2019) Packed ultra-wideband mapping array (PUMA): a radio telescope for cosmology and transients. Bull Am Astron Soc 51:53 arXiv:1907.12559 [astro-ph.IM]

Sluse D, Surdej J, Claeskens JF, Hutsemékers D, Jean C, Courbin F, Nakos T, Billeres M, Khmil SV (2003) A quadruply imaged quasar with an optical Einstein ring candidate: 1RXS J113155.4-123155. Astron Astrophys 406:L43–L46. https://doi.org/10.1051/0004-6361:20030904. arXiv:astro-ph/0307345 [astro-ph]

Sluse D, Sonnenfeld A, Rumbaugh N, Rusu CE, Fassnacht CD, Treu T, Suyu SH, Wong KC, Auger MW, Bonvin V, Collett T, Courbin F, Hilbert S, Koopmans LVE, Marshall PJ, Meylan G, Spiniello C, Tewes M (2017) H0LiCOW—II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435–1223. Mon Not R Astron Soc 470(4):4838–4857. https://doi.org/10.1093/mnras/stx1484. arXiv:1607.00382 [astro-ph.CO]

Sluse D, Rusu CE, Fassnacht CD, Sonnenfeld A, Richard J, Auger MW, Coccato L, Wong KC, Suyu SH, Treu T, Agnello A, Birrer S et al (2019) H0LiCOW—X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033–4723. Mon Not R Astron Soc 490(1):613–633. https://doi.org/10.1093/mnras/stz2483. arXiv:1905.08800 [astro-ph.GA]

Smoot GF, Bennett CL, Kogut A, Wright EL, Aymon J, Boggess NW, Cheng ES, de Amici G, Gulkis S, Hauser MG, Hinshaw G, Jackson PD, Janssen M, Kaita E, Kelsall T, Keegstra P, Lineweaver C, Loewenstein K, Lubin P, Mather J, Meyer SS, Moseley SH, Murdock T, Rokke L, Silverberg RF, Tenorio L, Weiss R, Wilkinson DT (1992) Structure in the COBE differential microwave radiometer first-year maps. Astrophys J Lett 396:L1. https://doi.org/10.1086/186504

Soares PS, Cunnington S, Pourtsidou A, Blake C (2021) Power spectrum multipole expansion for HI intensity mapping experiments: unbiased parameter estimation. Mon Not R Astron Soc 502(2):2549–2564. https://doi.org/10.1093/mnras/stab027. arXiv:2008.12102 [astro-ph.CO]

Soares PS, Watkinson CA, Cunnington S, Pourtsidou A (2021) Gaussian Process Regression for foreground removal in HI intensity mapping experiments. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stab2594. arXiv:2105.12665 [astro-ph.CO]

Soares-Santos M, Palmese A, Hartley W, Annis J, Garcia-Bellido J, Lahav O, Doctor Z, Fishbach M, Holz DE, Lin H et al (2019) First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814. Astrophys J Lett 876(1):L7. https://doi.org/10.3847/2041-8213/ab14f1. arXiv:1901.01540 [astro-ph.CO]

Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1):271–280. https://doi.org/10.1016/S0378-4754(00)00270-6. The Second IMACS Seminar on Monte Carlo Methods

Soderblom DR (2010) The ages of stars. Annu Rev Astron Astrophys 48:581–629. https://doi.org/10.1146/annurev-astro-081309-130806. arXiv:1003.6074 [astro-ph.SR]

Solomon R, Stojkovic D (2022) Variability in quasar light curves: using quasars as standard candles. JCAP 4:060. https://doi.org/10.1088/1475-7516/2022/04/060. arXiv:2110.03671 [astro-ph.CO]

Soltis J, Casertano S, Riess AG (2021) The parallax of $$\omega $$ centauri measured from Gaia EDR3 and a direct, geometric calibration of the tip of the red giant branch and the Hubble constant. Astrophys J Lett 908(1):L5. https://doi.org/10.3847/2041-8213/abdbad. arXiv:2012.09196 [astro-ph.GA]

Sonnenfeld A (2018) On the choice of lens density profile in time delay cosmography. Mon Not R Astron Soc 474(4):4648–4659. https://doi.org/10.1093/mnras/stx3105. arXiv:1710.05925 [astro-ph.CO]

Soucail G, Kneib JP, Golse G (2004) Multiple-images in the cluster lens Abell 2218: constraining the geometry of the Universe? Astron Astrophys 417:L33–L37. https://doi.org/10.1051/0004-6361:20040077. arXiv:astro-ph/0402658 [astro-ph]

Spergel D, Gehrels N, Baltay C, Bennett D, Breckinridge J, Donahue M, Dressler A, Gaudi BS, Greene T, Guyon O, Hirata C, Kalirai J et al (2015) Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv e-prints arXiv:1503.03757

Spinelli M, Zoldan A, De Lucia G, Xie L, Viel M (2020) The atomic Hydrogen content of the post-reionization Universe. Mon Not R Astron Soc 493(4):5434–5455. https://doi.org/10.1093/mnras/staa604. arXiv:1909.02242 [astro-ph.CO]

Spinelli M, Carucci IP, Cunnington S, Harper SE, Irfan MO, Fonseca J, Pourtsidou A, Wolz L (2022) SKAO H I intensity mapping: blind foreground subtraction challenge. Mon Not R Astron Soc 509(2):2048–2074. https://doi.org/10.1093/mnras/stab3064. arXiv:2107.10814 [astro-ph.CO]

Spinrad H, Dey A, Stern D, Dunlop J, Peacock J, Jimenez R, Windhorst R (1997) LBDS 53W091: an old, red galaxy at $$z = 1.552$$. Astrophys J 484(2):581–601. https://doi.org/10.1086/304381. arXiv:astro-ph/9702233 [astro-ph]

Spolyar D, Sahlén M, Silk J (2013) Topology and dark energy: testing gravity in voids. Phys Rev Lett 111(24):241103. https://doi.org/10.1103/PhysRevLett.111.241103. arXiv:1304.5239 [astro-ph.CO]

Stark CW, Font-Ribera A, White M, Lee KG (2015) Finding high-redshift voids using Lyman $$\alpha $$ forest tomography. Mon Not R Astron Soc 453(4):4311–4323. https://doi.org/10.1093/mnras/stv1868. arXiv:1504.03290 [astro-ph.CO]

Stefanon M, Marchesini D, Rudnick GH, Brammer GB, Whitaker KE (2013) What are the progenitors of compact, massive, quiescent galaxies at $$z = 2.3$$? The population of massive galaxies at $$z > 3$$ from NMBS and CANDELS. Astrophys J 768(1):92. https://doi.org/10.1088/0004-637X/768/1/92. arXiv:1301.7063 [astro-ph.CO]

Steinhardt CL, Jauzac M, Acebron A, Atek H, Capak P, Davidzon I, Eckert D, Harvey D, Koekemoer AM, Lagos CDP et al (2020) The BUFFALO HST survey. Astrophys J Suppl 247(2):64. https://doi.org/10.3847/1538-4365/ab75ed. arXiv:2001.09999 [astro-ph.GA]

Stern D, Jimenez R, Verde L, Kamionkowski M, Stanford SA (2010) Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements. JCAP 2:008. https://doi.org/10.1088/1475-7516/2010/02/008. arXiv:0907.3149

Stern D, Djorgovski SG, Krone-Martins A, Sluse D, Delchambre L, Ducourant C, Teixeira R, Surdej J, Boehm C, den Brok J, Dobie D, Drake A, Galluccio L, Graham MJ, Jalan P, Klüter J, Le Campion JF, Mahabal A, Mignard F, Murphy T, Nierenberg A, Scarano JS, Simon J, Slezak E, Spindola-Duarte C, Wambsganss J (2021) Gaia GraL: Gaia DR2 Gravitational Lens Systems. VI. Spectroscopic confirmation and modeling of quadruply imaged lensed quasars. Astrophys J 921(1):42. https://doi.org/10.3847/1538-4357/ac0f04. arXiv:2012.10051 [astro-ph.GA]

Stopyra S, Peiris HV, Pontzen A (2021) How to build a catalogue of linearly evolving cosmic voids. Mon Not R Astron Soc 500(3):4173–4180. https://doi.org/10.1093/mnras/staa3587. arXiv:2007.14395 [astro-ph.CO]

Straatman CMS, Labbé I, Spitler LR, Allen R, Altieri B, Brammer GB, Dickinson M, van Dokkum P, Inami H, Glazebrook K, Kacprzak GG, Kawinwanichakij L, Kelson DD, McCarthy PJ, Mehrtens N, Monson A, Murphy D, Papovich C, Persson SE, Quadri R, Rees G, Tomczak A, Tran KVH, Tilvi V (2014) A substantial population of massive quiescent galaxies at $$z \sim 4$$ from ZFOURGE. Astrophys J Lett 783(1):L14. https://doi.org/10.1088/2041-8205/783/1/L14. arXiv:1312.4952 [astro-ph.GA]

Sun L, Goetz E, Kissel JS, Betzwieser J, Karki S, Bhattacharjee D, Covas PB, Datrier LEH, Kandhasamy S, Lecoeuche YK et al (2021a) Characterization of systematic error in Advanced LIGO calibration in the second half of O3. arXiv e-prints arXiv:2107.00129

Sun W, Jiao K, Zhang TJ (2021b) Influence of the bounds of the hyperparameters on the reconstruction of the Hubble constant with the Gaussian process. Astrophys J 915(2):123. https://doi.org/10.3847/1538-4357/ac05b8

Sutter PM, Lavaux G, Wandelt BD, Weinberg DH (2012) A first application of the Alcock-Paczynski test to stacked cosmic voids. Astrophys J 761:187. https://doi.org/10.1088/0004-637X/761/2/187. arXiv:1208.1058

Sutter PM, Lavaux G, Wandelt BD, Weinberg DH (2012) A public void catalog from the SDSS DR7 galaxy redshift surveys based on the watershed transform. Astrophys J 761:44. https://doi.org/10.1088/0004-637X/761/1/44. arXiv:1207.2524

Sutter PM, Elahi P, Falck B, Onions J, Hamaus N, Knebe A, Srisawat C, Schneider A (2014) The life and death of cosmic voids. Mon Not R Astron Soc 445:1235–1244. https://doi.org/10.1093/mnras/stu1845. arXiv:1403.7525

Sutter PM, Lavaux G, Hamaus N, Wandelt BD, Weinberg DH, Warren MS (2014) Sparse sampling, galaxy bias, and voids. Mon Not R Astron Soc 442:462–471. https://doi.org/10.1093/mnras/stu893. arXiv:1309.5087

Sutter PM, Lavaux G, Wandelt BD, Weinberg DH, Warren MS, Pisani A (2014) Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask. Mon Not R Astron Soc 442(4):3127–3137. https://doi.org/10.1093/mnras/stu1094. arXiv:1310.7155 [astro-ph.CO]

Sutter PM, Pisani A, Wandelt BD, Weinberg DH (2014) A measurement of the Alcock-Paczyński effect using cosmic voids in the SDSS. Mon Not R Astron Soc 443:2983–2990. https://doi.org/10.1093/mnras/stu1392. arXiv:1404.5618

Sutter PM, Lavaux G, Hamaus N, Pisani A, Wandelt BD, Warren M, Villaescusa-Navarro F, Zivick P, Mao Q, Thompson BB (2015) VIDE: the Void IDentification and examination toolkit. Astron Comput 9:1–9. https://doi.org/10.1016/j.ascom.2014.10.002. arXiv:1406.1191

Suyu SH, Marshall PJ, Hobson MP, Blandford RD (2006) A Bayesian analysis of regularized source inversions in gravitational lensing. Mon Not R Astron Soc 371(2):983–998. https://doi.org/10.1111/j.1365-2966.2006.10733.x. arXiv:astro-ph/0601493 [astro-ph]

Suyu SH, Marshall PJ, Blandford RD, Fassnacht CD, Koopmans LVE, McKean JP, Treu T (2009) Dissecting the gravitational lens B1608+656. I. Lens potential reconstruction. Astrophys J 691(1):277–298. https://doi.org/10.1088/0004-637X/691/1/277. arXiv:0804.2827 [astro-ph]

Suyu SH, Marshall PJ, Auger MW, Hilbert S, Blandford RD, Koopmans LVE, Fassnacht CD, Treu T (2010) Dissecting the gravitational lens B1608+656. II. Precision measurements of the Hubble constant, spatial curvature, and the dark energy equation of state. Astrophys J 711(1):201–221. https://doi.org/10.1088/0004-637X/711/1/201. arXiv:0910.2773 [astro-ph.CO]

Suyu SH, Auger MW, Hilbert S, Marshall PJ, Tewes M, Treu T, Fassnacht CD, Koopmans LVE, Sluse D, Blandford RD, Courbin F, Meylan G (2013) Two accurate time-delay distances from strong lensing: implications for cosmology. Astrophys J 766(2):70. https://doi.org/10.1088/0004-637X/766/2/70. arXiv:1208.6010 [astro-ph.CO]

Suyu SH, Treu T, Hilbert S, Sonnenfeld A, Auger MW, Blandford RD, Collett T, Courbin F, Fassnacht CD, Koopmans LVE, Marshall PJ, Meylan G, Spiniello C, Tewes M (2014) Cosmology from gravitational lens time delays and Planck data. Astrophys J Lett 788(2):L35. https://doi.org/10.1088/2041-8205/788/2/L35. arXiv:1306.4732 [astro-ph.CO]

Suyu SH, Bonvin V, Courbin F, Fassnacht CD, Rusu CE, Sluse D, Treu T, Wong KC, Auger MW, Ding X, Hilbert S, Marshall PJ, Rumbaugh N, Sonnenfeld A, Tewes M, Tihhonova O, Agnello A, Blandford RD, Chen GCF, Collett T, Koopmans LVE, Liao K, Meylan G, Spiniello C (2017) H0LiCOW—I. H$$_{0}$$ Lenses in COSMOGRAIL’s Wellspring: program overview. Mon Not R Astron Soc 468(3):2590–2604. https://doi.org/10.1093/mnras/stx483. arXiv:1607.00017 [astro-ph.CO]

Svensson R, Zdziarski AA (1994) Black hole accretion disks with coronae. Astrophys J 436:599. https://doi.org/10.1086/174934

Swetz DS, Ade PAR, Amiri M, Appel JW, Battistelli ES, Burger B, Chervenak J, Devlin MJ, Dicker SR, Doriese WB, Dünner R, Essinger-Hileman T, Fisher RP, Fowler JW, Halpern M, Hasselfield M, Hilton GC, Hincks AD, Irwin KD, Jarosik N, Kaul M, Klein J, Lau JM, Limon M, Marriage TA, Marsden D, Martocci K, Mauskopf P, Moseley H, Netterfield CB, Niemack MD, Nolta MR, Page LA, Parker L, Staggs ST, Stryzak O, Switzer ER, Thornton R, Tucker C, Wollack E, Zhao Y (2011) Overview of the atacama cosmology telescope: receiver, instrumentation, and telescope systems. Astrophys J Suppl 194(2):41. https://doi.org/10.1088/0067-0049/194/2/41. arXiv:1007.0290 [astro-ph.IM]

Switzer ER, Masui KW, Bandura K, Calin LM, Chang TC, Chen XL, Li YC, Liao YW, Natarajan A, Pen UL et al (2013) Determination of z$$\sim $$0.8 neutral hydrogen fluctuations using the 21cm intensity mapping autocorrelation. MNRAS Lett 434(1):L46–L50. https://doi.org/10.1093/mnrasl/slt074

Switzer ER, Chang TC, Masui KW, Pen UL, Voytek TC (2015) Interpreting the unresolved intensity of cosmologically redshifted line radiation. Astrophys J 815(1):51. https://doi.org/10.1088/0004-637x/815/1/51

Takada M, Ellis RS, Chiba M, Greene JE, Aihara H, Arimoto N, Bundy K, Cohen J, Doré O, Graves G, Gunn JE, Heckman T, Hirata CM, Ho P, Kneib JP, Le Fèvre O, Lin L, More S, Murayama H, Nagao T, Ouchi M, Seiffert M, Silverman JD, Sodré L, Spergel DN, Strauss MA, Sugai H, Suto Y, Takami H, Wyse R (2014) Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. Publ Astron Soc Japan 66(1):R1. https://doi.org/10.1093/pasj/pst019. arXiv:1206.0737 [astro-ph.CO]

Tananbaum H, Avni Y, Branduardi G, Elvis M, Fabbiano G, Feigelson E, Giacconi R, Henry JP, Pye JP, Soltan A, Zamorani G (1979) X-ray studies of quasars with the Einstein Observatory. Astrophys J Lett 234:L9–L13. https://doi.org/10.1086/183100

Tavasoli S (2021) Void galaxy distribution: a challenge for $$\Lambda $$CDM. Astrophys J Lett 916(2):L24. https://doi.org/10.3847/2041-8213/ac1357

Taylor SR, Gair JR (2012) Cosmology with the lights off: standard sirens in the Einstein Telescope era. Phys Rev D 86(2):023502. https://doi.org/10.1103/PhysRevD.86.023502. arXiv:1204.6739 [astro-ph.CO]

Taylor SR, Gair JR, Mandel I (2012) Cosmology using advanced gravitational-wave detectors alone. Phys Rev D 85(2):023535. https://doi.org/10.1103/PhysRevD.85.023535. arXiv:1108.5161 [gr-qc]

Tegmark M (1997) How to make maps from CMB data without losing information. Astrophys J Lett 480:L87–L90. https://doi.org/10.1086/310631. arXiv:astro-ph/9611130

Terlevich R, Terlevich E, Melnick J, Chávez R, Plionis M, Bresolin F, Basilakos S (2015) On the road to precision cosmology with high-redshift H II galaxies. Mon Not R Astron Soc 451(3):3001–3010. https://doi.org/10.1093/mnras/stv1128. arXiv:1505.04376 [astro-ph.CO]

Tewes M, Courbin F, Meylan G (2013a) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XI. Techniques for time delay measurement in presence of microlensing. Astron Astrophys 553:A120. https://doi.org/10.1051/0004-6361/201220123. arXiv:1208.5598 [astro-ph.CO]

Tewes M, Courbin F, Meylan G, Kochanek CS, Eulaers E, Cantale N, Mosquera AM, Magain P, Van Winckel H, Sluse D, Cataldi G, Vörös D, Dye S (2013b) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131–1231. Astron Astrophys 556:A22. https://doi.org/10.1051/0004-6361/201220352. arXiv:1208.6009 [astro-ph.CO]

Thomas D, Maraston C, Schawinski K, Sarzi M, Silk J (2010) Environment and self-regulation in galaxy formation. Mon Not R Astron Soc 404:1775–1789. https://doi.org/10.1111/j.1365-2966.2010.16427.x. arXiv:0912.0259

Thomas D, Maraston C, Johansson J (2011) Flux-calibrated stellar population models of Lick absorption-line indices with variable element abundance ratios. Mon Not R Astron Soc 412(4):2183–2198. https://doi.org/10.1111/j.1365-2966.2010.18049.x. arXiv:1010.4569 [astro-ph.CO]

Tihhonova O, Courbin F, Harvey D, Hilbert S, Rusu CE, Fassnacht CD, Bonvin V, Marshall PJ, Meylan G, Sluse D, Suyu SH, Treu T, Wong KC (2018) H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar HE 0435–1223. Mon Not R Astron Soc 477(4):5657–5669. https://doi.org/10.1093/mnras/sty1040. arXiv:1711.08804 [astro-ph.CO]

Tihhonova O, Courbin F, Harvey D, Hilbert S, Peel A, Rusu CE, Fassnacht CD, Bonvin V, Marshall PJ, Meylan G, Sluse D, Suyu SH, Treu T, Wong KC (2020) H0LiCOW—XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging. Mon Not R Astron Soc 498(1):1406–1419. https://doi.org/10.1093/mnras/staa1436. arXiv:2005.12295 [astro-ph.GA]

Titov O, Lambert SB, Gontier AM (2011) VLBI measurement of the secular aberration drift. Astron Astrophys 529:A91. https://doi.org/10.1051/0004-6361/201015718. arXiv:1009.3698 [astro-ph.CO]

Tojeiro R, Heavens AF, Jimenez R, Panter B (2007) Recovering galaxy star formation and metallicity histories from spectra using VESPA. Mon Not R Astron Soc 381(3):1252–1266. https://doi.org/10.1111/j.1365-2966.2007.12323.x. arXiv:0704.0941 [astro-ph]

Tonry J, Schneider DP (1988) A new technique for measuring extragalactic distances. Astrophys J 96:807–815. https://doi.org/10.1086/114847

Tonry JL (1997) The SBF survey of galaxy distances. In: Livio M, Donahue M, Panagia N (eds) The extragalactic distance scale. Cambridge University Press, p 297

Tonry JL, Ajhar EA, Luppino GA (1990) Observations of surface-brightness fluctuations in Virgo. Astrophys J 100:1416. https://doi.org/10.1086/115606

Tonry JL, Blakeslee JP, Ajhar EA, Dressler A (2000) The surface brightness fluctuation survey of galaxy distances. II. Local and large-scale flows. Astrophys J 530(2):625–651. https://doi.org/10.1086/308409. arXiv:astro-ph/9907062 [astro-ph]

Tonry JL, Dressler A, Blakeslee JP, Ajhar EA, Fletcher AB, Luppino GA, Metzger MR, Moore CB (2001) The SBF survey of galaxy distances. IV. SBF magnitudes, colors, and distances. Astrophys J 546:681. https://doi.org/10.1086/318301

Torri E, Meneghetti M, Bartelmann M, Moscardini L, Rasia E, Tormen G (2004) The impact of cluster mergers on arc statistics. Mon Not R Astron Soc 349(2):476–490. https://doi.org/10.1111/j.1365-2966.2004.07508.x. arXiv:astro-ph/0310898 [astro-ph]

Treu T, Koopmans LVE (2002) The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant. Mon Not R Astron Soc 337(2):L6–L10. https://doi.org/10.1046/j.1365-8711.2002.06107.x. arXiv:astro-ph/0210002 [astro-ph]

Treu T, Koopmans LVE (2004) Massive dark matter halos and evolution of early-type galaxies to $$z \sim 1$$. Astrophys J 611(2):739–760. https://doi.org/10.1086/422245. arXiv:astro-ph/0401373 [astro-ph]

Treu T, Marshall PJ (2016) Time delay cosmography. Astron Astrophys Rev 24(1):11. https://doi.org/10.1007/s00159-016-0096-8. arXiv:1605.05333 [astro-ph.CO]

Tröster T, Asgari M, Blake C, Cataneo M, Heymans C, Hildebrandt H, Joachimi B, Lin CA, Sánchez AG, Wright AH, Bilicki M, Bose B, Crocce M, Dvornik A, Erben T, Giblin B, Glazebrook K, Hoekstra H, Joudaki S, Kannawadi A, Köhlinger F, Kuijken K, Lidman C, Lombriser L, Mead A, Parkinson D, Shan H, Wolf C, Xia Q (2021) KiDS-1000 Cosmology: constraints beyond flat $$\Lambda $$CDM. Astron Astrophys 649:A88. https://doi.org/10.1051/0004-6361/202039805. arXiv:2010.16416 [astro-ph.CO]

Tsaprazi E, Jasche J, Goobar A, Peiris HV, Andreoni I, Coughlin MW, Fremling CU, Graham MJ, Kasliwal M, Kulkarni SR, Mahabal AA, Riddle R, Sollerman J, Tzanidakis A (2022) The large-scale environment of thermonuclear and core-collapse supernovae. Mon Not R Astron Soc 510(1):366–372. https://doi.org/10.1093/mnras/stab3525. arXiv:2109.02651 [astro-ph.CO]

Tsupko OY, Fan Z, Bisnovatyi-Kogan GS (2020) Black hole shadow as a standard ruler in cosmology. Class Quantum Grav 37(6):065016. https://doi.org/10.1088/1361-6382/ab6f7d. arXiv:1905.10509 [gr-qc]

Unruh S, Schneider P, Sluse D (2017) Ambiguities in gravitational lens models: the density field from the source position transformation. Astron Astrophys 601:A77. https://doi.org/10.1051/0004-6361/201629048. arXiv:1606.04321 [astro-ph.CO]

Vagnozzi S, Bambi C, Visinelli L (2020) Concerns regarding the use of black hole shadows as standard rulers. Class Quantum Grav 37(8):087001. https://doi.org/10.1088/1361-6382/ab7965. arXiv:2001.02986 [gr-qc]

Vagnozzi S, Loeb A, Moresco M (2021) Eppur è piatto? The cosmic chronometers take on spatial curvature and cosmic concordance. Astrophys J 908(1):84. https://doi.org/10.3847/1538-4357/abd4df. arXiv:2011.11645 [astro-ph.CO]

Vagnozzi S, Pacucci F, Loeb A (2022) Implications for the Hubble tension from the ages of the oldest astrophysical objects. JHEP 36:27–35. https://doi.org/10.1016/j.jheap.2022.07.004. arXiv:2105.10421 [astro-ph.CO]

Valcin D, Bernal JL, Jimenez R, Verde L, Wandelt BD (2020) Inferring the age of the universe with globular clusters. JCAP 12:002. https://doi.org/10.1088/1475-7516/2020/12/002. arXiv:2007.06594 [astro-ph.CO]

Valcin D, Jimenez R, Verde L, Bernal JL, Wandelt BD (2021) The age of the Universe with globular clusters: reducing systematic uncertainties. JCAP 8:017. https://doi.org/10.1088/1475-7516/2021/08/017. arXiv:2102.04486 [astro-ph.GA]

Vargas dos Santos M, Quartin M, Reis RRR (2019) On the cosmological performance of photometric classified supernovae with machine learning. Mon Not R Astron Soc https://doi.org/10.1093/mnras/staa1968. arXiv:1908.04210 [astro-ph.CO]

van de Weygaert R, van Kampen E (1993) Voids in gravitational instability scenarios—part one—global density and velocity fields in an Einstein–De-Sitter Universe. Mon Not R Astron Soc 263:481. https://doi.org/10.1093/mnras/263.2.481

van de Weygaert R, Kreckel K, Platen E, Beygu B, van Gorkom JH, van der Hulst JM, Aragón-Calvo MA, Peebles PJE, Jarrett T, Rhee G, Kovač K, Yip CW (2011) The void galaxy survey. In: Ferreras I, Pasquali A (eds) Environment and the formation of galaxies: 30 years later. Astrophysics and space science proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20285-8_3. arXiv:1101.4187 [astro-ph.CO]

van Dokkum P, Danieli S, Cohen Y, Romanowsky AJ, Conroy C (2018) The distance of the dark matter deficient galaxy NGC 1052-DF2. Astrophys J Lett 864(1):L18. https://doi.org/10.3847/2041-8213/aada4d. arXiv:1807.06025 [astro-ph.GA]

van Dokkum PG, Franx M, Fabricant D, Illingworth GD, Kelson DD (2000) Hubble Space Telescope photometry and Keck spectroscopy of the rich cluster MS 1054–03: morphologies, Butcher-Oemler Effect, and the Color-Magnitude Relation at $$z = 0.83$$. Astrophys J 541(1):95–111. https://doi.org/10.1086/309402. arXiv:astro-ph/0002507 [astro-ph]

Vanden Berk DE et al (2001) Composite quasar spectra from the Sloan Digital Sky Survey. Astrophys J 122:549–564. https://doi.org/10.1086/321167. arXiv:astro-ph/0105231

Vandenberg DA, Bolte M, Stetson PB (1996) The age of the galactic globular cluster system. Annu Rev Astron Astrophys 34:461–510. https://doi.org/10.1146/annurev.astro.34.1.461

Vanderlinde K, Liu A, Gaensler B, Bond D, Hinshaw G, Ng C, Chiang C, Stairs I, Brown JA, Sievers J, Mena J, Smith K, Bandura K, Masui K, Spekkens K, Belostotski L, Dobbs M, Turok N, Boyle P, Rupen M, Landecker T, Pen UL, Kaspi V (2019) The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD). In: Canadian Long Range Plan for Astronomy and Astrophysics White Papers, vol 2020, p 28. https://doi.org/10.5281/zenodo.3765414. arXiv:1911.01777 [astro-ph.IM]

Vavryčuk V, Kroupa P (2020) The failure of testing for cosmic opacity via the distance-duality relation. Mon Not R Astron Soc 497(1):378–388. https://doi.org/10.1093/mnras/staa1936. arXiv:2007.10472 [astro-ph.CO]

Vazdekis A, Coelho P, Cassisi S, Ricciardelli E, Falcón-Barroso J, Sánchez-Blázquez P, Barbera FL, Beasley MA, Pietrinferni A (2015) Evolutionary stellar population synthesis with MILES—II. Scaled-solar and $$\alpha $$-enhanced models. Mon Not R Astron Soc 449(2):1177–1214. https://doi.org/10.1093/mnras/stv151

Vazdekis A, Koleva M, Ricciardelli E, Röck B, Falcón-Barroso J (2016) UV-extended E-MILES stellar population models: young components in massive early-type galaxies. Mon Not R Astron Soc 463(4):3409–3436. https://doi.org/10.1093/mnras/stw2231. arXiv:1612.01187 [astro-ph.GA]

Verde L, Protopapas P, Jimenez R (2014) The expansion rate of the intermediate universe in light of Planck. Phys Dark Univ 5:307–314. https://doi.org/10.1016/j.dark.2014.09.003. arXiv:1403.2181 [astro-ph.CO]

Verde L, Treu T, Riess AG (2019) Tensions between the early and late Universe. Nat Astron 3:891–895. https://doi.org/10.1038/s41550-019-0902-0. arXiv:1907.10625 [astro-ph.CO]

Verza G, Pisani A, Carbone C, Hamaus N, Guzzo L (2019) The void size function in dynamical dark energy cosmologies. JCAP 12:040. https://doi.org/10.1088/1475-7516/2019/12/040. arXiv:1906.00409 [astro-ph.CO]

Vielzeuf P, Kovács A, Demirbozan U, Fosalba P, Baxter E, Hamaus N, Huterer D, Miquel R, Nadathur S, Pollina G, Sánchez C, Collaboration DES et al (2021) Dark Energy Survey Year 1 results: the lensing imprint of cosmic voids on the cosmic microwave background. Mon Not R Astron Soc 500(1):464–480. https://doi.org/10.1093/mnras/staa3231. arXiv:1911.02951 [astro-ph.CO]

Vijaykumar A, Saketh MVS, Kumar S, Ajith P, Choudhury TR (2020) Probing the large scale structure using gravitational-wave observations of binary black holes. arXiv e-prints arXiv:2005.01111 [astro-ph.CO]

Viljoen JA, Fonseca J, Maartens R (2020) Constraining the growth rate by combining multiple future surveys. JCAP 09:054. https://doi.org/10.1088/1475-7516/2020/09/054. arXiv:2007.04656 [astro-ph.CO]

Villaescusa-Navarro F, Viel M, Datta KK, Choudhury TR (2014) Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping. JCAP 09:050. https://doi.org/10.1088/1475-7516/2014/09/050. arXiv:1405.6713 [astro-ph.CO]

Villaescusa-Navarro F, Bull P, Viel M (2015) Weighing neutrinos with cosmic neutral hydrogen. Astrophys J 814(2):146. https://doi.org/10.1088/0004-637X/814/2/146. arXiv:1507.05102 [astro-ph.CO]

Villaescusa-Navarro F, Alonso D, Viel M (2017) Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case. Mon Not R Astron Soc 466(3):2736–2751. https://doi.org/10.1093/mnras/stw3224. arXiv:1609.00019 [astro-ph.CO]

Villaescusa-Navarro F et al (2018) Ingredients for 21 cm intensity mapping. Astrophys J 866(2):135. https://doi.org/10.3847/1538-4357/aadba0. arXiv:1804.09180 [astro-ph.CO]

Villar VA et al (2020) SuperRAENN: a semisupervised supernova photometric classification pipeline trained on pan-STARRS1 medium-deep survey supernovae. Astrophys J 905(2):94. https://doi.org/10.3847/1538-4357/abc6fd. arXiv:2008.04921 [astro-ph.HE]

Vitale S, Chen HY (2018) Measuring the Hubble constant with neutron star black hole mergers. Phys Rev Lett 121(2):021303. https://doi.org/10.1103/PhysRevLett.121.021303. arXiv:1804.07337 [astro-ph.CO]

Vito F, Brandt WN, Bauer FE, Calura F, Gilli R, Luo B, Shemmer O, Vignali C, Zamorani G, Brusa M, Civano F, Comastri A, Nanni R (2019) The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. Astron Astrophys 630:A118. https://doi.org/10.1051/0004-6361/201936217. arXiv:1908.09849 [astro-ph.GA]

Voivodic R, Lima M, Llinares C, Mota DF (2017) Modeling void abundance in modified gravity. Phys Rev D 95(2):024018. https://doi.org/10.1103/PhysRevD.95.024018. arXiv:1609.02544 [astro-ph.CO]

Voivodic R, Rubira H, Lima M (2020) The Halo Void (Dust) model of large scale structure. JCAP 10:033. https://doi.org/10.1088/1475-7516/2020/10/033. arXiv:2003.06411 [astro-ph.CO]

von Marttens R, Marra V, Casarini L, Gonzalez JE, Alcaniz J (2019) Null test for interactions in the dark sector. Phys Rev D 99(4):043521. https://doi.org/10.1103/PhysRevD.99.043521. arXiv:1812.02333 [astro-ph.CO]

Vuissoz C, Courbin F, Sluse D, Meylan G, Ibrahimov M, Asfandiyarov I, Stoops E, Eigenbrod A, Le Guillou L, van Winckel H, Magain P (2007) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. V. The time delay in SDSS J1650+4251. Astron Astrophys 464(3):845–851. https://doi.org/10.1051/0004-6361:20065823. arXiv:astro-ph/0606317 [astro-ph]

Vuissoz C, Courbin F, Sluse D, Meylan G, Chantry V, Eulaers E, Morgan C, Eyler ME, Kochanek CS, Coles J, Saha P, Magain P, Falco EE (2008) COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VII. Time delays and the Hubble constant from WFI J2033–4723. Astron Astrophys 488(2):481–490. https://doi.org/10.1051/0004-6361:200809866. arXiv:0803.4015 [astro-ph]

Wagner-Kaiser R, Sarajedini A, von Hippel T, Stenning DC, van Dyk DA, Jeffery E, Robinson E, Stein N, Anderson J, Jefferys WH (2017) The ACS survey of Galactic globular clusters—XIV. Bayesian single-population analysis of 69 globular clusters. Mon Not R Astron Soc 468(1):1038–1055. https://doi.org/10.1093/mnras/stx544. arXiv:1702.08856 [astro-ph.SR]

Walsh D, Carswell RF, Weymann RJ (1979) 0957+561 A, B: twin quasistellar objects or gravitational lens? Nature 279:381–384. https://doi.org/10.1038/279381a0

Wang FY, Dai ZG, Liang EW (2015) Gamma-ray burst cosmology. New Astron Rev 67:1–17. https://doi.org/10.1016/j.newar.2015.03.001. arXiv:1504.00735 [astro-ph.HE]

Wang T, Elbaz D, Schreiber C, Pannella M, Shu X, Willner SP, Ashby MLN, Huang JS, Fontana A, Dekel A, Daddi E, Ferguson HC, Dunlop J, Ciesla L, Koekemoer AM, Giavalisco M, Boutsia K, Finkelstein S, Juneau S, Barro G, Koo DC, Michałowski MJ, Orellana G, Lu Y, Castellano M, Bourne N, Buitrago F, Santini P, Faber SM, Hathi N, Lucas RA, Pérez-González PG (2016) Infrared color selection of Massive galaxies at $$z > 3$$. Astrophys J 816(2):84. https://doi.org/10.3847/0004-637X/816/2/84. arXiv:1512.02656 [astro-ph.GA]

Wang LL, Luo AL, Shen SY, Hou W, Kong X, Song YH, Zhang JN, Wu H, Cao ZH, Hou YH, Wang YF, Zhang Y, Zhao YH (2018) Spectral classification and composites of galaxies in LAMOST DR4. Mon Not R Astron Soc 474(2):1873–1885. https://doi.org/10.1093/mnras/stx2798. arXiv:1710.10611 [astro-ph.GA]

Wang Y, Dickinson M, Hillenbrand L, Robberto M, Armus L, Ballardini M, Barkhouser R, Bartlett J, Behroozi P, Benjamin RA, Brinchmann J, Chary RR, Chuang CH, Cimatti A, Conroy C, Content R, Daddi E, Donahue M, Dore O, Eisenhardt P, Ferguson HC, Faisst A, Fraser WC, Glazebrook K, Gorjian V, Helou G, Hirata CM, Hudson M, Kirkpatrick JD, Malhotra S, Mei S, Moscardini L, Newman JA, Ninkov Z, Orsi A, Ressler M, Rhoads J, Rhodes J, Ryan R, Samushia L, Scarlata C, Scolnic D, Seiffert M, Shapley A, Smee S, Valentino F, Vorobiev D, Wechsler RH (2019) ATLAS probe: breakthrough science of galaxy evolution, cosmology, milky way, and the solar system. arXiv e-prints arXiv:1909.00070 [astro-ph.IM]

Wang LF, Zhao ZW, Zhang JF, Zhang X (2020) A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin. JCAP 11:012. https://doi.org/10.1088/1475-7516/2020/11/012. arXiv:1907.01838 [astro-ph.CO]

Wang FY, Hu JP, Zhang GQ, Dai ZG (2021a) Standardized long gamma-ray bursts as a cosmic distance indicator. arXiv e-prints arXiv:2106.14155 [astro-ph.HE]

Wang J et al (2021b) H i intensity mapping with MeerKAT: calibration pipeline for multidish autocorrelation observations. Mon Not R Astron Soc 505(3):3698–3721. https://doi.org/10.1093/mnras/stab1365. arXiv:2011.13789 [astro-ph.CO]

Watson D, Denney KD, Vestergaard M, Davis TM (2011) A new cosmological distance measure using active galactic nuclei. Astrophys J Lett 740(2):L49. https://doi.org/10.1088/2041-8205/740/2/L49. arXiv:1109.4632 [astro-ph.CO]

Webb NA, Coriat M, Traulsen I, Ballet J, Motch C, Carrera FJ, Koliopanos F, Authier J, de la Calle I, Ceballos MT, Colomo E, Chuard D, Freyberg M, Garcia T, Kolehmainen M, Lamer G, Lin D, Maggi P, Michel L, Page CG, Page MJ, Perea-Calderon JV, Pineau FX, Rodriguez P, Rosen SR, Santos Lleo M, Saxton RD, Schwope A, Tomás L, Watson MG, Zakardjian A (2020) The XMM-Newton serendipitous survey. IX. The fourth XMM-Newton serendipitous source catalogue. Astron Astrophys 641:A136. https://doi.org/10.1051/0004-6361/201937353. arXiv:2007.02899 [astro-ph.HE]

Wei H (2010) Observational constraints on cosmological models with the updated long gamma-ray bursts. JCAP 2010(8):020. https://doi.org/10.1088/1475-7516/2010/08/020. arXiv:1004.4951 [astro-ph.CO]

Wei JJ, Melia F (2020) Model-independent distance calibration and curvature measurement using quasars and cosmic chronometers. Astrophys J 888(2):99. https://doi.org/10.3847/1538-4357/ab5e7d. arXiv:1912.00668 [astro-ph.CO]

Wei JJ, Wu XF (2017) Gamma-ray burst cosmology: Hubble diagram and star formation history. Int J Mod Phys D 26(2):1730002. https://doi.org/10.1142/S0218271817300026. arXiv:1607.01550 [astro-ph.HE]

Weltman A et al (2020) Fundamental physics with the Square Kilometre Array. Publ Astron Soc Austral 37:e002. https://doi.org/10.1017/pasa.2019.42. arXiv:1810.02680 [astro-ph.CO]

White M (2016) A marked correlation function for constraining modified gravity models. JCAP 2016(11):057. https://doi.org/10.1088/1475-7516/2016/11/057. arXiv:1609.08632 [astro-ph.CO]

White M, Padmanabhan N (2017) Matched filtering with interferometric 21 cm experiments. Mon Not R Astron Soc 471(1):1167–1180. https://doi.org/10.1093/mnras/stx1682. arXiv:1705.09669 [astro-ph.CO]

Wiklind T, Dickinson M, Ferguson HC, Giavalisco M, Mobasher B, Grogin NA, Panagia N (2008) A population of massive and evolved galaxies at $$z \gtrsim 5$$. Astrophys J 676(2):781–806. https://doi.org/10.1086/524919. arXiv:0710.0406 [astro-ph]

Wilkinson DM, Maraston C, Goddard D, Thomas D, Parikh T (2017) FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code. Mon Not R Astron Soc 472(4):4297–4326. https://doi.org/10.1093/mnras/stx2215. arXiv:1711.00865 [astro-ph.GA]

Williams RJ, Quadri RF, Franx M, van Dokkum P, Labbé I (2009) Detection of quiescent galaxies in a bicolor sequence from z = 0–2. Astrophys J 691(2):1879–1895. https://doi.org/10.1088/0004-637X/691/2/1879. arXiv:0806.0625 [astro-ph]

Willingale R, O’Brien PT, Osborne JP, Godet O, Page KL, Goad MR, Burrows DN, Zhang B, Rol E, Gehrels N, Chincarini G (2007) Testing the standard fireball model of gamma-ray bursts using late X-ray afterglows measured by Swift. Astrophys J 662(2):1093–1110. https://doi.org/10.1086/517989. arXiv:astro-ph/0612031 [astro-ph]

Wilson C, Bean R (2021) Testing f (R ) gravity with scale dependent cosmic void velocity profiles. Phys Rev D 104(2):023512. https://doi.org/10.1103/PhysRevD.104.023512. arXiv:2012.05925 [astro-ph.CO]

Wilson ML, Zabludoff AI, Ammons SM, Momcheva IG, Williams KA, Keeton CR (2016) A spectroscopic survey of the fields of 28 strong gravitational lenses: the group catalog. Astrophys J 833(2):194. https://doi.org/10.3847/1538-4357/833/2/194. arXiv:1710.09908 [astro-ph.GA]

Witzemann A, Alonso D, Fonseca J, Santos MG (2019) Simulated multitracer analyses with H I intensity mapping. Mon Not R Astron Soc 485(4):5519–5531. https://doi.org/10.1093/mnras/stz778. arXiv:1808.03093 [astro-ph.CO]

Wojtak R, Powell D, Abel T (2016) Voids in cosmological simulations over cosmic time. Mon Not R Astron Soc 458(4):4431–4442. https://doi.org/10.1093/mnras/stw615. arXiv:1602.08541 [astro-ph.CO]

Wojtak R, Hjorth J, Gall C (2019) Magnified or multiply imaged?—Search strategies for gravitationally lensed supernovae in wide-field surveys. Mon Not R Astron Soc 487(3):3342–3355. https://doi.org/10.1093/mnras/stz1516. arXiv:1903.07687 [astro-ph.CO]

Wolz L, Abdalla FB, Blake C, Shaw JR, Chapman E, Rawlings S (2014) The effect of foreground subtraction on cosmological measurements from Intensity Mapping. Mon Not R Astron Soc 441(4):3271–3283. https://doi.org/10.1093/mnras/stu792. arXiv:1310.8144 [astro-ph.CO]

Wolz L, Blake C, Wyithe JSB (2017a) Determining the HI content of galaxies via intensity mapping cross-correlations. Mon Not R Astron Soc 470(3):3220–3226. https://doi.org/10.1093/mnras/stx1388. arXiv:1703.08268 [astro-ph.GA]

Wolz L et al (2017b) Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data. Mon Not R Astron Soc 464(4):4938–4949. https://doi.org/10.1093/mnras/stw2556. arXiv:1510.05453 [astro-ph.CO]

Wolz L, Pourtsidou A, Masui KW, Chang TC, Bautista JE, Müller EM, Avila S, Bacon D, Percival WJ, Cunnington S, Anderson C, Chen X, Kneib JP, Li YC, Liao YW, Pen UL, Peterson JB, Rossi G, Schneider DP, Yadav J, Zhao GB (2022) H I constraints from the cross-correlation of eBOSS galaxies and Green Bank Telescope intensity maps. Mon Not R Astron Soc 510(3):3495–3511. https://doi.org/10.1093/mnras/stab3621. arXiv:2102.04946

Wong KC, Suyu SH, Auger MW, Bonvin V, Courbin F, Fassnacht CD, Halkola A, Rusu CE, Sluse D, Sonnenfeld A, Treu T, Collett TE, Hilbert S, Koopmans LVE, Marshall PJ, Rumbaugh N (2017) H0LiCOW—IV. Lens mass model of HE 0435–1223 and blind measurement of its time-delay distance for cosmology. Mon Not R Astron Soc 465(4):4895–4913. https://doi.org/10.1093/mnras/stw3077. arXiv:1607.01403 [astro-ph.CO]

Wong KC, Suyu SH, Chen GCF, Rusu CE, Millon M, Sluse D, Bonvin V, Fassnacht CD, Taubenberger S, Auger MW, Birrer S, Chan JHH, Courbin F, Hilbert S, Tihhonova O, Treu T, Agnello A, Ding X, Jee I, Komatsu E, Shajib AJ, Sonnenfeld A, Blandford RD, Koopmans LVE, Marshall PJ, Meylan G (2020) H0LiCOW—XIII. A 2.4 per cent measurement of H$$_{0}$$ from lensed quasars: 5.3$$\sigma $$ tension between early- and late-Universe probes. Mon Not R Astron Soc 498(1):1420–1439. https://doi.org/10.1093/mnras/stz3094. arXiv:1907.04869 [astro-ph.CO]

Worthey G (1993) The dependence of the brightness fluctuation distance indicator on stellar population age and metallicity. Astrophys J 409:530–536. https://doi.org/10.1086/172684

Worthey G (1994) Comprehensive Stellar population models and the disentanglement of age and metallicity effects. Astrophys J Suppl 95:107. https://doi.org/10.1086/192096

Worthey G, Ottaviani DL (1997) H$$\gamma $$ and H$$\delta $$ absorption features in stars and Stellar populations. Astrophys J Suppl 111(2):377–386. https://doi.org/10.1086/313021

Wright EL, Eisenhardt PRM, Mainzer AK, Ressler ME, Cutri RM, Jarrett T, Kirkpatrick JD, Padgett D, McMillan RS, Skrutskie M, Stanford SA, Cohen M, Walker RG, Mather JC, Leisawitz D, Gautier I TN, McLean I, Benford D, Lonsdale CJ, Blain A, Mendez B, Irace WR, Duval V, Liu F, Royer D, Heinrichsen I, Howard J, Shannon M, Kendall M, Walsh AL, Larsen M, Cardon JG, Schick S, Schwalm M, Abid M, Fabinsky B, Naes L, Tsai CW (2010) The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astrophys J 140(6):1868–1881. https://doi.org/10.1088/0004-6256/140/6/1868. arXiv:1008.0031 [astro-ph.IM]

Wu J, Vanden Berk D, Grupe D, Koch S, Gelbord J, Schneider DP, Gronwall C, Wesolowski S, Porterfield BL (2012) A quasar catalog with simultaneous UV, optical, and X-ray observations by Swift. Astrophys J Suppl 201(2):10. https://doi.org/10.1088/0067-0049/201/2/10. arXiv:1203.6071 [astro-ph.CO]

Wu F, Li J, Zuo S, Chen X, Das S, Marriner JP, Oxholm TM, Phan A, Stebbins A, Timbie PT, Ansari R, Campagne JE, Chen Z, Cong Y, Huang Q, Kwak J, Li Y, Liu T, Liu Y, Niu C, Osinga C, Perdereau O, Peterson JB, Podczerwinski J, Shi H, Siebert G, Sun S, Tian H, Tucker GS, Wang Q, Wang R, Wang Y, Wu Y, Xu Y, Yu K, Yu Z, Zhang J, Zhang J, Zhu J (2021) The Tianlai dish pathfinder array: design, operation, and performance of a prototype transit radio interferometer. Mon Not R Astron Soc 506(3):3455–3482. https://doi.org/10.1093/mnras/stab1802. arXiv:2011.05946 [astro-ph.IM]

Wucknitz O (2002) Degeneracies and scaling relations in general power-law models for gravitational lenses. Mon Not R Astron Soc 332(4):951–961. https://doi.org/10.1046/j.1365-8711.2002.05426.x. arXiv:astro-ph/0202376 [astro-ph]

Wucknitz O, Spitler LG, Pen UL (2021) Cosmology with gravitationally lensed repeating fast radio bursts. Astron Astrophys 645:A44. https://doi.org/10.1051/0004-6361/202038248. arXiv:2004.11643 [astro-ph.CO]

Wuensche CA (2019) The BINGO telescope: a new instrument exploring the new 21 cm cosmology window. J Phys Conf Ser 1269(1):012002. https://doi.org/10.1088/1742-6596/1269/1/012002. arXiv:1803.01644 [astro-ph.IM]

Wyithe S (2008) A method to measure the mass of damped Ly-alpha absorber host galaxies using fluctuations in 21cm emission. Mon Not R Astron Soc 388:1889. https://doi.org/10.1111/j.1365-2966.2008.13546.x. arXiv:0804.1624 [astro-ph]

Xu D, Sluse D, Schneider P, Springel V, Vogelsberger M, Nelson D, Hernquist L (2016) Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays. Mon Not R Astron Soc 456(1):739–755. https://doi.org/10.1093/mnras/stv2708. arXiv:1507.07937 [astro-ph.GA]

Xu F, Tang CH, Geng JJ, Wang FY, Wang YY, Kuerban A, Huang YF (2021) X-ray plateaus in gamma-ray burst afterglows and their application in cosmology. Astrophys J 920(2):135. https://doi.org/10.3847/1538-4357/ac158a. arXiv:2012.05627 [astro-ph.HE]

Yang LF, Neyrinck MC, Aragón-Calvo MA, Falck B, Silk J (2015) Warmth elevating the depths: shallower voids with warm dark matter. Mon Not R Astron Soc 451:3606–3614. https://doi.org/10.1093/mnras/stv1087. arXiv:1411.5029

Yang W, Pan S, Di Valentino E, Saridakis EN, Chakraborty S (2019) Observational constraints on one-parameter dynamical dark-energy parametrizations and the H$$_{0}$$ tension. Phys Rev D 99(4):043543. https://doi.org/10.1103/PhysRevD.99.043543. arXiv:1810.05141 [astro-ph.CO]

Ye C, Fishbach M (2021) Cosmology with standard sirens at cosmic noon. arXiv e-prints arXiv:2103.14038 [astro-ph.CO]

Yıldırım A, Suyu SH, Halkola A (2020) Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics. Mon Not R Astron Soc 493(4):4783–4807. https://doi.org/10.1093/mnras/staa498. arXiv:1904.07237 [astro-ph.CO]

Yıldırım A, Suyu SH, Chen GCF, Komatsu E (2021) TDCOSMO VIII: Cosmological distance measurements in light of the mass-sheet degeneracy—forecasts from strong lensing and IFU stellar kinematics. arXiv e-prints arXiv:2109.14615 [astro-ph.CO]

Yonetoku D, Murakami T, Nakamura T, Yamazaki R, Inoue AK, Ioka K (2004) Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys J 609(2):935–951. https://doi.org/10.1086/421285. arXiv:astro-ph/0309217 [astro-ph]

You ZQ, Zhu XJ, Ashton G, Thrane E, Zhu ZH (2021) Standard-siren cosmology using gravitational waves from binary black holes. Astrophys J 908(2):215. https://doi.org/10.3847/1538-4357/abd4d4. arXiv:2004.00036 [astro-ph.CO]

Young M, Elvis M, Risaliti G (2010) The X-ray energy dependence of the relation between optical and X-ray emission in quasars. Astrophys J 708:1388–1397. https://doi.org/10.1088/0004-637X/708/2/1388. arXiv:0911.0474 [astro-ph.HE]

Yu HR, Zhang TJ, Pen UL (2014) Method for direct measurement of cosmic acceleration by 21-cm absorption systems. Phys Rev Lett 113(4):041303. https://doi.org/10.1103/PhysRevLett.113.041303. arXiv:1311.2363 [astro-ph.CO]

Zamorani G, Henry JP, Maccacaro T, Tananbaum H, Soltan A, Avni Y, Liebert J, Stocke J, Strittmatter PA, Weymann RJ, Smith MG, Condon JJ (1981) X-ray studies of quasars with the Einstein Observatory. II. Astrophys J 245:357–374. https://doi.org/10.1086/158815

Zaninoni E, Bernardini MG, Margutti R, Amati L (2014) Ten years of Swift: a universal scaling for short and long gamma-ray bursts ($${{{\rm E}}_{{{\rm X}},{{\rm iso}}}}$$-$${{\rm E}_{\gamma ,{\rm iso}}}$$-$${{\rm E}_{{\rm pk}}}$$). In: Proceedings of Swift: 10 Years of Discovery (SWIFT 10). Proc. Sci. SISSA, p 120

Zel’dovich YB (1970) Gravitational instability: an approximate theory for large density perturbations. Astron Astrophys 5:84–89

Zeldovich YB, Einasto J, Shandarin SF (1982) Giant voids in the Universe. Nature 300(5891):407–413. https://doi.org/10.1038/300407a0

Zhai Z, Tinker JL, Hahn C, Seo HJ, Blanton MR, Tojeiro R, Camacho HO, Lima M, Carnero Rosell A, Sobreira F, da Costa LN, Bautista JE, Brownstein JR, Comparat J, Dawson K, Newman JA, Prakash A, Roman-Lopes A, Schneider DP (2017) The clustering of luminous red galaxies at $$z \sim 0.7$$ from EBOSS and BOSS Data. Astrophys J 848(2):76. https://doi.org/10.3847/1538-4357/aa8eee. arXiv:1607.05383 [astro-ph.CO]

Zhang B (2014) Gamma-ray burst prompt emission. Int J Mod Phys D 23(2):1430002. https://doi.org/10.1142/S021827181430002X. arXiv:1402.7022 [astro-ph.HE]

Zhang B, Mészáros P (2002) An analysis of gamma-ray burst spectral break models. Astrophys J 581(2):1236–1247. https://doi.org/10.1086/344338. arXiv:astro-ph/0206158 [astro-ph]

Zhang C, Zhang H, Yuan S, Liu S, Zhang TJ, Sun YC (2014) Four new observational $$H(z)$$ data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res Astron Astrophys 14:1221–1233. https://doi.org/10.1088/1674-4527/14/10/002. arXiv:1207.4541

Zhang G, Li Z, Liu J, Spergel DN, Kreisch CD, Pisani A, Wandelt BD (2020) Void halo mass function: a promising probe of neutrino mass. Phys Rev D 102(8):083537. https://doi.org/10.1103/PhysRevD.102.083537. arXiv:1910.07553 [astro-ph.CO]

Zhang B, Zhu M, Wu ZZ, Yu QZ, Jiang P, Yue YL, Huang ML, Hao QL (2021) Extragalactic H I 21-cm absorption line observations with the Five-hundred-meter Aperture Spherical radio Telescope. Mon Not R Astron Soc 503(4):5385–5396. https://doi.org/10.1093/mnras/stab754. arXiv:2103.06573 [astro-ph.GA]

Zhao D, Xia JQ (2021) Constraining the anisotropy of the Universe with the X-ray and UV fluxes of quasars. Eur Phys J C 81(8):694. https://doi.org/10.1140/epjc/s10052-021-09491-0. arXiv:2105.03965 [astro-ph.CO]

Zhao C, Tao C, Liang Y, Kitaura FS, Chuang CH (2016) DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions. Mon Not R Astron Soc 459(3):2670–2680. https://doi.org/10.1093/mnras/stw660. arXiv:1511.04299 [astro-ph.CO]

Zhao GB, Raveri M, Pogosian L, Wang Y, Crittenden RG, Handley WJ, Percival WJ, Beutler F, Brinkmann J, Chuang CH, Cuesta AJ, Eisenstein DJ, Kitaura FS, Koyama K, L’Huillier B, Nichol RC, Pieri MM, Rodriguez-Torres S, Ross AJ, Rossi G, Sánchez AG, Shafieloo A, Tinker JL, Tojeiro R, Vazquez JA, Zhang H (2017) Dynamical dark energy in light of the latest observations. Nature Astron 1:627–632. https://doi.org/10.1038/s41550-017-0216-z. arXiv:1701.08165 [astro-ph.CO]

Zhao W, Zhang JC, Zhang QX, Liang JT, Luan XH, Zhou QQ, Yi SX, Wang FF, Zhang ST (2020a) Statistical Study of Gamma-Ray Bursts with Jet Break Features in Multiwavelength Afterglow Emissions. Astrophys J 900(2):112. https://doi.org/10.3847/1538-4357/aba43a. arXiv:2009.03550 [astro-ph.HE]

Zhao ZW, Wang LF, Zhang JF, Zhang X (2020b) Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji. Sci Bull 65(16):1340–1348. https://doi.org/10.1016/j.scib.2020.04.032. arXiv:1912.11629 [astro-ph.CO]

Zheng H, Tegmark M, Dillon JS, Liu A, Neben A, Jonas J, Reich P, Reich W, Kim DA, Neben AR (2017a) An improved model of diffuse galactic radio emission from 10 MHz to 5 THz. Mon Not R Astron Soc 464(3):3486–3497. https://doi.org/10.1093/mnras/stw2525. arXiv:1605.04920 [astro-ph.CO]

Zheng XC, Xue YQ, Brandt WN, Li JY, Paolillo M, Yang G, Zhu SF, Luo B, Sun MY, Hughes TM, Bauer FE, Vito F, Wang JX, Liu T, Vignali C, Shu XW (2017b) Deepest view of AGN X-ray variability with the 7 Ms chandra deep field-south survey. Astrophys J 849(2):127. https://doi.org/10.3847/1538-4357/aa9378. arXiv:1710.04358 [astro-ph.GA]

Zitrin A, Redlich M, Broadhurst T (2014) Consistent use of Type Ia Supernovae highly magnified by galaxy clusters to constrain the cosmological parameters. Astrophys J 789(1):51. https://doi.org/10.1088/0004-637X/789/1/51. arXiv:1311.5224 [astro-ph.CO]

Zivick P, Sutter PM, Wandelt BD, Li B, Lam TY (2015) Using cosmic voids to distinguish f(R) gravity in future galaxy surveys. Mon Not R Astron Soc 451:4215–4222. https://doi.org/10.1093/mnras/stv1209. arXiv:1411.5694

Zucca E, Bardelli S, Bolzonella M, Zamorani G, Ilbert O, Pozzetti L, Mignoli M, Kovač K, Lilly S, Tresse L, Tasca L, Cassata P et al (2009) The zCOSMOS survey: the role of the environment in the evolution of the luminosity function of different galaxy types. Astron Astrophys 508(3):1217–1234. https://doi.org/10.1051/0004-6361/200912665. arXiv:0909.4674 [astro-ph.CO]

Zumalacarregui M, Seljak U (2018) Limits on stellar-mass compact objects as dark matter from gravitational lensing of type Ia supernovae. Phys Rev Lett 121(14):141101. https://doi.org/10.1103/PhysRevLett.121.141101. arXiv:1712.02240 [astro-ph.CO]