Unusual Biomolecular Condensates Containing Nucleoporins or Lamin in the Germinal Vesicle of the Common Frog

D. S. Bogolyubov1, I. O. Bogolyubova1
1Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguilera-Gomez, A. and Rabouille, C., Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila, Dev. Biol., 2017, vol. 428, pp. 310–317. https://doi.org/10.1016/j.ydbio.2017.03.029

Amzallag, E. and Hornstein, E., Crosstalk between biomolecular condensates and proteostasis, Cells, 2022, vol. 11, 2415. https://doi.org/10.3390/cells11152415

Antifeeva, I.A., Fonin, A.V., Fefilova, A.S., Stepanen-ko, O.V., Povarova, O.I., Silonov, S.A., Kuznetsova, I.M., Uversky, V.N., and Turoverov, K.K., Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept, Cell Mol. Life Sci., 2022, vol. 79, 251. https://doi.org/10.1007/s00018-022-04276-4

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K., Biomolecular condensates: organizers of cellular biochemistry, Nat. Rev. Mol. Cell Biol., 2017, vol. 18, pp. 285–289. https://doi.org/10.1038/nrm.2017.7

Belmont, A.S., Nuclear compartments: an incomplete primer to nuclear compartments, bodies, and genome organization relative to nuclear architecture, Cold Spring Harb. Perspect. Biol., 2022, vol. 14, a041268. https://doi.org/10.1101/cshperspect.a041268

Bersini, S., Lytle, N.K., Schulte, R., Huang, L., Wahl, G.M., and Hetzer, M.W., Nup93 regulates breast tumor growth by modulating cell proliferation and actin cytoskeleton remodeling, Life Sci. Alliance, 2020, vol. 3, e201900623. https://doi.org/10.26508/lsa.201900623

Bhat, P., Honson, D., and Guttman, M., Nuclear compartmentalization as a mechanism of quantitative control of gene expression, Nat. Rev. Mol. Cell Biol., 2021, vol. 22, pp. 653–670. https://doi.org/10.1038/s41580-021-00387-1

Bhattacharjee, P., Dasgupta, D., and Sengupta, K., Molecular events in lamin B1 homopolymerization: a biophysical characterization, J. Phys. Chem. B, vol. 119, pp. 14014–14021. https://doi.org/10.1021/acs.jpcb.5b07320

Bogolyubov, D.S., Karyosphere (karyosome): a peculiar structure of the oocyte nucleus, Int. Rev. Cell Mol. Biol., 2018, vol. 337, pp. 1–48. https://doi.org/10.1016/bs.ircmb.2017.12.001

Bogolyubov, D.S., Travina, A.O., and Bogolyubova, I.O., Karyosphere capsule in oocytes of the grass frog: to be or not to be? A critical view, Cell Tissue Biol., 2022, vol. 16, pp. 521–539. https://doi.org/10.1134/S1990519X22060013

Bogolyubova, I.O. and Bogolyubov, D.S., Detection of RNA polymerase II in mouse embryos during zygotic genome activation using immunocytochemistry, Methods Mol. Biol., 2017, vol. 1605, pp. 147–159. https://doi.org/10.1007/978-1-4939-6988-3_10

Bohnsack, M.T., Stüven, T., Kuhn, C., Cordes, V.C., and Görlich, D., A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes, Nat. Cell Biol., 2006, vol. 8, pp. 257–263. https://doi.org/10.1038/ncb1357

Breuer, M. and Ohkura, H., A negative loop within the nuclear pore complex controls global chromatin organization, Genes Dev., 2015, vol. 29, pp. 1789–1794. https://doi.org/10.1101/gad.264341.115

Caruso, R.A., Rigoli, L., Fedele, F., Pizzi, G., Quattrocchi, E., Finocchiaro, G., Labate, A., Paparo, D., Lucianò, R., Parisi, A., and Venuti, A., Modifications of nuclear envelope in tumour cells of human gastric carcinomas: an ultrastructural study, Anticancer Res., 2010, vol. 30, pp. 699–702.

Drino A. and Schaefer, M.R., RNAs, phase separation, and membrane-less organelles: are post-transcriptional modifications modulating organelle dynamics?, Bioessays, 2018, vol. 40, e1800085. https://doi.org/10.1002/bies.201800085

Dultz, E., Wojtynek, M., Medalia, O., and Onischenko, E., The nuclear pore complex: birth, life, and death of a cellular behemoth, Cells, 2022, vol. 11, 1456. https://doi.org/10.3390/cells11091456

Duryee, W.R., Chromosomal physiology in relation to nuclear structure, Ann. N. Y. Acad. Sci., 1950, vol. 50, pp. 920–953. https://doi.org/10.1111/j.1749-6632.1950.tb39892.x

Feng, Z., Chen, X., Wu, X., and Zhang, M., Formation of biological condensates via phase separation: characteristics, analytical methods, and physiological implications, J. Biol. Chem., 2019, vol. 294, pp. 1482–4835. https://doi.org/10.1074/jbc.REV119.007895

Fonin, A.V., Antifeeva, I.A., Kuznetsova, I.M., Turoverov, K.K., Zaslavsky, B.Y., Kulkarni, P., and Uversky, V.N., Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates, Essays Biochem., 2022, vol. 66, pp. 831–847. https://doi.org/10.1042/EBC20220052

Gall, J.G., Exporting actin, Nat. Cell Biol., 2006, vol. 8, pp. 205–207. https://doi.org/10.1038/ncb0306-205

Gall, J.G., Wu, Z., Murphy, C., and Gao, H., Structure in the amphibian germinal vesicle, Exp. Cell Res., 2004, vol. 296, pp. 28–34. https://doi.org/10.1016/j.yexcr.2004.03.017

Gruzova, M.N., The nucleus during oogenesis with special reference to extrachromosomal structures, in Oocyte Growth and Maturation, New York: Consultants Bureau, 1988, pp. 77–163.

Gruzova, M.N. and Parfenov, V.N., Ultrastructure of late oocyte nuclei in Rana temporaria, J. Cell Sci., 1977, vol. 28, pp. 1–13. https://doi.org/10.1242/jcs.28.1.1

Gruzova, M.N. and Parfenov, V.N., Karyosphere in oogenesis and intranuclear morphogenesis, Int. Rev. Cytol., 1993, vol. 144, pp. 1–52. https://doi.org/10.1016/s0074-7696(08)61512-0

Heinß, N., Sushkin, M., Yu, M., and Lemke, E.A., Multifunctionality of F-rich nucleoporins, Biochem. Soc. Trans., 2020, vol. 48, pp. 2603–2614. https://doi.org/10.1042/BST20200357

Hirose, T., Ninomiya, K., Nakagawa, S., and Yamazaki, T., A guide to membraneless organelles and their various roles in gene regulation, Nat. Rev. Mol. Cell Biol., 2022, vol. 24, pp. 288–304. https://doi.org/10.1038/s41580-022-00558-8

Ilicheva, N., Podgornaya, O., Bogolyubov, D., and Pochukalina, G., The karyosphere capsule in Rana temporaria oo-cytes contains structural and DNA-binding proteins, Nucleus, 2018, vol. 9, pp. 516–529. https://doi.org/10.1080/19491034.2018.1530935

Kessel, R.G., The structure and function of annulate lamellae: porous cytoplasmic and intranuclear membranes, Int. Rev. Cytol., 1983, vol. 82, pp. 181–303. https://doi.org/10.1016/s0074-7696(08)60826-8

Koide, O., Iwai, S., and Matsumura, H., Intranuclear membranous profiles in germinoma cells—a variant of nuclear pockets and intranuclear annulate lamellae, Acta Pathol. Jpn., 1985, vol. 35, pp. 605–619. https://doi.org/10.1111/j.1440-1827.1985.tb00602.x

Konishi, H.A. and Yoshimura, S.H., Interactions between non-structured domains of FG- and non-FG-nucleoporins coordinate the ordered assembly of the nuclear pore complex in mitosis, FASEB J., 2020, vol. 34, pp. 1532–1545. https://doi.org/10.1096/fj.201901669R2020

Kuhn, T.M. and Capelson, M., Nuclear pore proteins in regulation of chromatin state, Cells, 2019, vol. 8, 1414. https://doi.org/10.3390/cells8111414

Labade, A.S., Karmodiya, K., and Sengupta, K., HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205, Epigenetics Chromatin, 2016, vol. 9, 54. https://doi.org/10.1186/s13072-016-0106-0

Mao, Y.S., Zhang, B., and Spector, D.L., Biogenesis and function of nuclear bodies, Trends Genet., 2011, vol. 27, pp. 295–306. https://doi.org/10.1016/j.tig.2011.05.006

Mitrea, D.M. and Kriwacki, R.W., Phase separation in biology; functional organization of a higher order, Cell Commun. Signal., 2016, vol. 14, 1. https://doi.org/10.1186/s12964-015-0125-7

Moir, R.D., Yoon, M., Khuon, S., Goldman, R.D., Lamins A and B1 different pathways of assembly during nuclear envelope formation in living cells, J. Cell Biol., 2000, vol. 151, pp. 1155−1168. https://doi.org/10.1083/jcb.153.3.621

Nag, N., Sasidharan, S., Uversky, V.N., Saudagar, P., and Tripathi, T., Phase separation of FG-nucleoporins in nuclear pore complexes, Biochim. Biophys. Acta Mol. Cell Res., 2022, vol. 1869, 119205. https://doi.org/10.1016/j.bbamcr.2021.119205

Ng, S.C. and Görlich, D., A simple thermodynamics description of phase separation of Nup98 FG domains, Nat. Commun., 2022, vol. 13, 6172. https://doi.org/10.1038/s41467-022-33697-9

Nizami, Z.F. and Gall, J.G., Pearls are novel Cajal body-like structures in the Xenopus germinal vesicle that are dependent on RNA pol III transcription, Chromosome Res., 2012, vol. 20, pp. 953–969. https://doi.org/10.1007/s10577-012-9320-1

Parfenov, V.N., The karyosphere during late oogenesis in Rana ridibunda, Eur. J. Cell Biol., 1979, vol. 19. pp. 102–108.

Parfenov, V.N., Transformations of nuclear structures during oogenesis of some vertebrates (on the morphogenesis of the karyosphere capsule), Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 1995.

Parfenov, V.N., Davis, D.S., Pochukalina, G.N., Sample, C.E., Bugaeva, E.A., and Murti, K.G., Nuclear actin filaments and their topological changes in frog o-ocytes, Exp. Cell Res., 1995, vol. 217, pp. 385–394. https://doi.org/10.1006/excr.1995.1101

Park, P.C. and De Boni, U., Nuclear membrane modifications in polytene nuclei of Drosophila melanogaster: serial reconstruction and cytochemistry, Anat. Rec., 1992, vol. 234, pp. 15–26. https://doi.org/10.1002/ar.1092340103

Pastore, A. and Temussi, P.A., Crowding revisited: open questions and future perspectives, Trends Biochem. Sci., 2022, vol. 47, pp. 1048–1058. https://doi.org/10.1016/j.tibs.2022.05.007

Panorchan, P., Wirtz, D., and Tseng, Y., Structure-function relationship of biological gels revealed by multiple-particle tracking and differential interference contrast microscopy: the case of human lamin networks, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2004, vol. 70, 041906. https://doi.org/10.1103/PhysRevE.70.041906

Raikov, I.B., Karadzhan, B.P., Kaur, R., and Mignot, J.-P., Nuclear fine structure at interphase and during encystment in two forms of the testacean Arcella vulgaris, Eur. J. Protistol., 1989, vol. 24, pp. 369–380. https://doi.org/10.1016/S0932-4739(89)80007-0

Ralle, T., Grund, C., Franke, W.W., and Stick, R., Intranuclear membrane structure formations by CaaX-containing nuclear proteins, J. Cell Sci., 2004, vol. 117, pp. 6095–6104. https://doi.org/10.1242/jcs.01528

Rivas, G. and Minton, A.P., Macromolecular crowding in vitro, in vivo, and in between, Trends Biochem. Sci., 2016, vol. 41, pp. 970–981. https://doi.org/10.1016/j.tibs.2016.08.013

Ródenas, E., Klerkx, E.P.F., Ayuso, C., Audhya, A., and Askjaer, P., Early embryonic requirement for nucleoporin Nup35/NPP-19 in nuclear assembly, Dev. Biol., 2009, vol. 327, pp. 399–409. https://doi.org/10.1016/j.ydbio.2008.12.024

Sawyer, I.A., Sturgill, D., and Dundr, M., Membraneless nuclear organelles and the search for phases within phases, Wiley Interdiscip. Rev. RNA, 2019, vol. 10, e1514. https://doi.org/10.1002/wrna.1514

Shin, Y. and Brangwynne, C.P., Liquid phase condensation in cell physiology and disease, Science, 2017, vol. 357,  eaaf4382. https://doi.org/10.1126/science.aaf4382

Siddiqui, G.A. and Naeem, A., Connecting the dots: macromolecular crowding and protein aggregation, J. Fluoresc., 2023, vol. 33, pp. 1–11. https://doi.org/10.1007/s10895-022-03082-2

Stick, R., cDNA cloning of the developmentally regulated lamin LIII of Xenopus laevis, EMBO J., 1988, vol. 7, pp. 3189–3197. https://doi.org/10.1002/j.1460-2075.1988.tb03186.x

Stiekema, M., Houben, F., Verheyen, F., Borgers, M., Menzel, J., Meschkat, M., van Zandvoort, M.A.M.J., Ramaekers, F.C.S., and Broers, J.L.V., The role of lamins in the nucleoplasmic reticulum, a pleiomorphic organelle that enhances nucleo-cytoplasmic interplay, Front. Cell Dev. B-iol., 2022, vol. 10, 914286. https://doi.org/10.3389/fcell.2022.914286

Stroberg, W. and Schnell, S., On the origin of non-membrane-bound organelles, and their physiological function, J. Theor. Biol., 2017, vol. 434, pp. 42–49. https://doi.org/10.1016/j.jtbi.2017.04.006

Stuurman, N., Heins, S., and Aebi, U., Nuclear lamins: their structure, assembly, and interactions, J. Struct. Biol., 1998, vol. 122, pp. 42–66. https://doi.org/10.1006/jsbi.1998.3987

Tsvetkov, A.G., Skovorodkin, I.A., Bogoliubov, D.S., Kvasov, I.D., and Parfenov, V.N., Extrachromosomal structures containing small nuclear RNP and coilin in the late vitellogenic oocytes of hibernating grass frogs, Tsitologiya, 2002, vol. 44, pp. 1037–1045.

Uversky, V.N., Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder, Curr. Opin. Struct. Biol., 2017, vol. 44, pp. 18–30. https://doi.org/10.1016/j.sbi.2016.10.015

Vendruscolo, M. and Fuxreiter, M., Protein condensation diseases: therapeutic opportunities, Nat. Commun., 2022, vol. 13, 5550. https://doi.org/10.1038/s41467-022-32940-7

Wagner, K., Über die Entwicklung des Froscheies, Arch. Zellforsch., 1923, vol. 17, p. 1–44.

Wallace, R.A., Jared, D.W., Dumont, J.N., and Sega, M.W., Protein incorporation by isolated amphibian oocytes. III. Optimum incubation conditions, J. Exp. Zool., 1973, vol. 184. p. 321–333. https://doi.org/10.1002/jez.1401840305

Wu, Z. and Gall, J.G., “Micronucleoli” in the Xenopus germinal vesicle, Chromosoma, 1997, vol. 105, pp. 438–443. https://doi.org/10.1007/BF02510480

Zhang, L., Wang, S., Wang, W., Shi, J., Stovall, D.B., Li, D., and Sui, G., Phase-separated subcellular compartmentation and related human diseases, Int. J. Mol. Sci., 2022, vol. 23, 5491. https://doi.org/10.3390/ijms23105491

Zhao, Y.G. and Zhang, H., Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates, Dev. Cell, 2020, vol. 5, pp. 30–44. https://doi.org/10.1016/j.devcel.2020.06.033

Zhou, C., The molecular and functional interaction between membrane-bound organelles and membrane-less condensates, Front. Cell Dev. Biol., 2022, vol. 10, 896305. https://doi.org/10.3389/fcell.2022.896305

Zilman, A., Aggregation, phase separation and spatial morphologies of the assemblies of FG nucleoporins, J. Mol. Bio-l., 2018, vol. 430, pp. 4730–4740. https://doi.org/10.1016/j.jmb.2018.07.011

Zybina, E.V. and Zybina, T.G., Modifications of nuclear envelope during differentiation and depolyploidization of rat trophoblast cells, Micron, 2008, vol. 39, pp. 593–606. https://doi.org/10.1016/j.micron.2007.05.006