Untargeted GC/MS-based approach for identification of anti-inflammatory alkaloids from Hippeastrum elegans (Amaryllidaceae) using a human neutrophil model
Tài liệu tham khảo
Lu, 2012, Alkaloids isolated from natural herbs as the anticancer agents, Evid. Based Compl. Altern. Med., 2012, 1, 10.1155/2012/485042
Moreno, 2020, Chemical profiling and cholinesterase inhibitory activity of five Phaedranassa Herb. (Amaryllidaceae) species from Ecuador, Molecules, 25, 2092, 10.3390/molecules25092092
Rocha, 2019, Imidazole alkaloids inhibit the pro-inflammatory mechanisms of human neutrophil and exhibit anti‐inflammatory properties in vivo, J. Pharm. Pharmacol., 71, 849, 10.1111/jphp.13068
Delgado-Rizo, 2017, Neutrophil extracellular traps and its implications in inflammation: an overview, Front. Immunol., 8, 1, 10.3389/fimmu.2017.00081
Tay, 2020, The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol., 20, 363, 10.1038/s41577-020-0311-8
Németh, 2020, Neutrophils as emerging therapeutic targets, Nat. Rev. Drug Discov., 19, 253, 10.1038/s41573-019-0054-z
Giordani, 2011, Alkaloids from Hippeastrum morelianum Lem. (Amaryllidaceae), Magn. Reson. Chem., 49, 668, 10.1002/mrc.2794
Cortes, 2018, Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury, Life Sci., 203, 54, 10.1016/j.lfs.2018.04.026
Kang, 2012, Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing p38 and STATs activation and increases the survival rate of mice after LPS challenge, Int. Immunopharmacol., 12, 249, 10.1016/j.intimp.2011.11.018
Carvalho, 2015, Cytotoxic alkaloids from Hippeastrum solandriflorum Lindl, J. Braz. Chem. Soc., 26, 1976
Paiva, 2020, Development and validation of a UPLC-ESI-MS method for quantitation of the anti-alzheimer drug galanthamine and other Amaryllidaceae alkaloids in plants, J. Braz. Chem. Soc., 31, 265
Paiva, 2021, Chemical composition and anticholinesterase activity of cultivated bulbs from Hippeastrum elegans, a potential tropical source of bioactive alkaloids, Phytochem. Lett., 43, 27, 10.1016/j.phytol.2021.03.004
Johnsen, 2017, Gas chromatography-mass spectrometry data processing made easy, J. Chromatogr. A, 1503, 57, 10.1016/j.chroma.2017.04.052
Graziani, 2018, Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells, Sci. Rep., 8, 1, 10.1038/s41598-018-23704-9
Lucisano, 1984, Lysossomal enzyme release from polymorphonuclear leukocytes induced by immune complexes of IgM and IgG, J. Immunol., 132, 2015, 10.4049/jimmunol.132.4.2015
Mosmann, 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55, 10.1016/0022-1759(83)90303-4
Trujillo‐Chacón, 2019, In vitro micropropagation and alkaloids analysis by GC–MS of Chilean Amaryllidaceae plants: Rhodophiala pratensis, Phytochem. Anal., 31, 46, 10.1002/pca.2865
Havlasová, 2014, Chemical composition of bioactive alkaloid extracts from some Narcissus species and varieties and their biological activity, Nat. Prod. Commun., 9, 1151
Tallini, 2017, Hippeastrum reticulatum (Amaryllidaceae): alkaloid profiling, biological activities and molecular docking, Molecules, 22, 2191, 10.3390/molecules22122191
Lianza, 2020, Isolation, absolute configuration and cytotoxic activities of alkaloids from Hippeastrum goianum (Ravenna) Meerow (Amaryllidaceae), J. Braz. Chem. Soc., 31, 2135
Bessa, 2017, Identification of alkaloids from Hippeastrum aulicum (ker Gawl.) Herb. (Amaryllidaceae) using CGC-MS and ambient ionization mass spectrometry (OS-MS and LS-MS), J. Braz. Chem. Soc., 28, 819
Guo, 2016, New alkaloids from Hippeastrum papilio (Ravenna) Van Scheepen, Helv. Chim. Acta, 99, 143, 10.1002/hlca.201500188
Berkov, 2021, GC-MS of some lycorine‐type Amaryllidaceae alkaloids, J. Mass Spectrom., 56, 1, 10.1002/jms.4704
Karakoyun, 2020, A comprehensive study on Narcissus tazetta subsp. tazetta L.: chemo-profiling, isolation, anticholinesterase activity and molecular docking of Amaryllidaceae alkaloids, S. Afr. J. Bot., 130, 148, 10.1016/j.sajb.2019.11.016
Tarakemeh, 2019, Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. Tazetta, J. Pharm. Biomed. Anal., 172, 230, 10.1016/j.jpba.2019.04.043
Bastida, 1996, Alkaloids from Hippeastrum solandriflorum, Planta Med., 62, 10.1055/s-2006-957808
Kornienko, 2008, Chemistry, biology, and medicinal potential of narciclasine and its congeners, Chem. Rev., 6, 1982, 10.1021/cr078198u
Skov, 2008, Solving fundamental problems in chromatographic analysis, Anal. Bioanal. Chem., 390, 281, 10.1007/s00216-007-1618-z
Bedouhène, 2017, Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils, Am. J. Blood Res., 7, 41
Bertram, 2011, Protein kinase C isoforms in neutrophil adhesion and activation, Arch. Immunol. Ther. Exp. (Warsz.), 59, 79, 10.1007/s00005-011-0112-7
Ilavenil, 2011, Protection of human erythrocyte using Crinum asiaticum extract and lycorine from oxidative damage induced by 2-amidinopropane, Saudi J. Biol. Sci., 18, 181, 10.1016/j.sjbs.2010.11.001
Ballabio, 2015, A MATLAB toolbox for principal component analysis and unsupervised exploration of data structure, Chemometr. Intell. Lab. Syst., 149, 1, 10.1016/j.chemolab.2015.10.003
Roy, 2018, Lycorine: a prospective natural lead for anticancer drug discovery, Biomed. Pharmacother., 107, 615, 10.1016/j.biopha.2018.07.147