Untangling the role of tau in Alzheimer’s disease: A unifying hypothesis

Walter de Gruyter GmbH - Tập 4 - Trang 115-133 - 2013
Neha Bhatia1, Garth F. Hall1
1Department of Biological Sciences, University of Massachusetts Lowell, Lowell, USA

Tóm tắt

Recent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.

Tài liệu tham khảo

Alzheimer A., Über eine eigenartige Erkrankung der Hirnrinde, Allg. Z. Psychiatr., 1907, 64, 146–148 Lowenberg K., Waggoner R., Familial organic psychosis (Alzheimer’s type), Arch. Neurol., 1934, 31, 737–754 Blessed G., Tomlinson B.E., Roth M., The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects, Br. J. Psychiatry, 1968, 114, 797–811 Olson M.I., Shaw C.M., Presenile dementia and Alzheimer’s disease in mongolism, Brain, 1969, 92, 147–156 Cook R., Ward B., Austin J., Studies in aging of the brain: IV. Familial Alzheimer’s disease: relationship to transmissible dementia, aneuploidy and microtubular defects, Neurology, 1979, 29, 1402–1412 Buckton K.E., Whalley L.J., Lee M., Christie J.E., Chromosome changes in Alzheimer’s presenile dementia, J. Med. Genet., 1983, 20, 46–51 Bird T.D., Sumi S.M., Nemens E.J., Nochlin D., Schellenberg G., Lampe T.H., et al., Phenotypic heterogeneity in familial Alzheimer’s disease: a study of 24 kindreds, Ann. Neurol., 1989, 25, 12–25 Gambetti P., Autilio-Gambetti L., Perry G., Shecket G., Crane R.C., Antibodies to neurofibrillary tangles of Alzheimer’s disease raised from human and animal neurofilament fractions, Lab. Invest., 1983, 49, 430–435 Hyman B.T., Van Hoesen G.W., Damasio A.R., Barnes C.L., Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation, Science, 1984, 225, 1168–1170 Kidd M., Paired helical filaments in electron microscopy of Alzheimer’s disease, Nature, 1963, 197, 192–193 Whitehouse P.J., Price D.L., Struble R.G., Clark A.W., Coyle J.T., DeLong M.R., Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 1982, 215, 1237–1239 Drachman D.A., Leavitt J., Human memory and the cholinergic system: a relationship to aging?, Arch. Neurol., 1974, 30, 113–121 Glenner G.G., Wong C.W., Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun., 1984, 122, 1131–1135 Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I., Abnormal phosphorylation of the microtubuleassociated protein tau in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 1986, 83, 4913–4917 Kosik K.S., Joachim C.L., Selkoe D.J., Microtubule associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA 83, 1986, 4044–4048 Bancher C., Brunner C., Lassman H., Budka H., Jellinger K., Wiche G., et al., Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease, Brain Res., 1989, 477, 90–99 McKee A.C., Kowall N.W., Kosik K.S., Microtubular reorganization and dendritic growth response in Alzheimer’s disease, Ann. Neurol., 1989, 26, 652–659 Braak H., Braak E., Neuropathological staging of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259 Yamaguchi H., Nakazato Y., Shoji M., Ihara Y., Hirai S., Ultrastructure of the neuropil threads in the Alzheimer brain: their dendritic origin and accumulation in the senile plaques, Acta Neuropathol., 1990, 80, 368–374 St. George-Hyslop P.H., Tanzi R.E., Polinsky R.J., Haines J.L., Nee L., Watkins P.C., et al. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science, 1987, 235, 885–890 Chartier-Harlin M.C., Crawford F., Houlden H., Warren A., Hughes D., Fidani L., et al., Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene, Nature, 1991, 353, 844–846 Goate A., Chartier-Hardin M.C., Mullan M., Brown J., Crawford F., Fidani L., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s Disease, Nature, 1991, 349, 704–706 Murrel J. M., Farlow B., Ghetti B., Benson M.D., A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease, Science, 1991, 254, 97–99 Selkoe D.J., The molecular pathology of Alzheimer’s disease, Neuron, 1991, 6, 487–498 Hardy J.A., Higgins G.A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185 Wallace W.C., Bragin V., Robakis N.K., Sambamurti K., VanderPutten D., Merril C.R., et al., Increased biosynthesis of Alzheimer amyloid precursor protein the in cerebral cortex of rats with lesions of the nucleus basalis of Meynert, Mol. Brain Res., 1991, 10, 173–178 Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G.S., et al., Apolipoprotein E: high-avidity binding to betaamyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1993, 90, 1977–1981 Wisniewski T., Frangione B., Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid, Neurosci. Lett., 1992, 135:235–238 Gentleman S.M., Nash M.J., Sweeting C.J., Graham D.I., Roberts G.W., β-Amyloid precursor protein (βAPP) as a marker for axonal injury after head injury, Neurosci. Lett., 1993, 160, 139–144 McKenzie J.E., Gentleman S.M., Roberts G.W., Graham D.I., Royston M.C., Increased numbers of βAPP-immunoreactive neurones in the entorhinal cortex after head injury, Neuroreport, 1994, 6, 161–164 Yankner B.A., Dawes L.R., Fisher S., Villa-Komaroff L., Oster-Granite M.L., Neve R.L., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease, Science, 1989, 245, 417–420 Busciglio J., Lorenzo A., Yeh J., Yankner B.A., Amyloid fibrils induce tau phosphorylation and loss of microtubule binding, Neuron, 1995, 14, 879–888 Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al., Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein, Nature, 1995, 373, 523–527 Wolfe M.S., Xia W., Ostaszewski B.L., Diehl T.S., Kimberly W.T., Selkoe D.J., Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity, Nature, 1999, 398, 513–517 Kowall N.W., Kosik K.S., Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease, Ann. Neurol., 1987, 22, 639–643 Weingarten M.D., Lockwood A.H., Hwo S.Y., Kirschner M.W., A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA, 1975, 72, 1858–1862 Cleveland D.W., Hwo S.Y., Kirschner M.W., Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J. Mol. Biol., 1977, 116, 227–247 Greenberg S.G., Davies P., A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis, Proc. Natl. Acad. Sci. USA, 1990, 87, 5827–5831 Binder L.I., Frankfurter A., Rebhun L.I., The distribution of tau polypeptides in the mammalian central nervous system, J. Cell Biol., 1985, 101, 1371–1378 Lindwall G., Cole R.D., Phosphorylation affects the ability of tau protein to promote microtubule assembly, J. Biol. Chem., 1984, 259, 5301–5305 Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain, Science, 1998, 239, 285–288 Goedert M., Wischik C.M., Crowther R.A., Walker J.E., Klug A., Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau, Proc. Natl. Acad. Sci. USA, 85, 1998, 4051–4055 Ksiezak-Reding H., Yen S.H., Structural stability of paired helical filaments requires microtubule-binding domains of tau: a model for self-association, Neuron, 1991, 6, 717–728 Novak M., Jakes R., Edwards P.C., Milstein C., Wischik C.M., Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51, Proc. Natl. Acad. Sci. USA, 1991, 88, 5837–5841 Crowther R.A., Olesen O.F., Jakes R., Goedert M., The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease, FEBS Lett., 1992, 309, 199–202 Arriagada P.A., Growdon J.H., Hedley-White E.T., Hyman B.T., Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s Disease, Neurology, 1992, 42, 631–639 Armstrong R.A., Myers D., Smith C.U.M., The spatial patterns of plaques and tangles in Alzheimer’s disease do not support the ‘cascade hypothesis’, Dementia, 1993, 4, 16–20 Baum L., Seger R., Woodgett J.R., Kawabata S., Maruyama K., Koyama M., Silver J., Saitoh T., Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement, Mol. Brain Res., 1995, 34, 1–17 Levy-Lahad E., Wasco W., Poorkaj P., Romano D.M., Oshima J., Pettingell W.H., et al., Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science, 1995, 269, 973–977 Sherrington R., Rogaev E.I., Liang Y., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature, 1995, 375, 754–760 Spillantini M.G., Murrell J.R., Goedert M., Farlow M.R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. USA, 1998, 95, 7737–7741 Hall G.F., Yao J., Lee G., Tau overexpressed in identified lamprey neurons in situ is spatially segregated by phosphorylation state, forms hyperphosphorylated, dense aggregations and induces neurodegeneration, Proc. Natl. Acad. Sci. USA, 1997, 94, 4733–4738 Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M.K., Trojanowski J.Q., et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron, 1999, 24, 751–762 Spittaels K., Van den Haute C., Van Dorpe J., Bruynseels K., Vandezande K., Laenen I., et al., Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein, Am. J. Pathol., 1999, 155, 2153–2165 Götz J., Chen F., Barmettler R., Nitsch R.M., Tau filament formation in transgenic mice expressing P301L tau, J. Biol. Chem., 2001, 276, 529–534 Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al., Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, Nat. Genet., 2000, 25, 402–405 Buee L., Delacourte A., Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease, Brain Pathol., 1999, 9, 681–693 Hasegawa M., Smith M.J., Goedert M., Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Lett., 1998, 437, 207–210 Arawaka S., Usami M., Sahara N., Schellenberg G.D., Lee G., Mori H., The tau mutation (val337met) disrupts cytoskeletal networks of microtubules, Neuroreport, 2000, 10, 993–997 Goedert M., Jakes R., Crowther R.A., Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments, FEBS Lett., 1999, 450, 306–311 Nacharaju P., Lewis J., Easson C., Yen S., Hackett J., Hutton M., et al., Accelerated filament formation from tau protein with specific FTDP-17 missense mutations, FEBS Lett., 1999, 447, 195–199 Goedert M., Satumtira S., Jakes R., Smith M.J., Kamibayashi C., White C.L.3rd, et al., Reduced binding of protein phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations, J. Neurochem., 2000, 75, 2155–2162 Alonso A.D., Grundke-Iqbal I., Barra H.S., Iqbal K., Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubuleassociated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau, Proc. Natl. Acad. Sci. USA, 94, 1997, 298–303 Alonso A.C., Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments and straight filaments, Proc. Natl. Acad. Sci. USA, 2001, 98, 6923–6928 Lee V.M., Goedert M., Trojanowski J.Q., Neurodegenerative tauopathies, Annu. Rev. Neurosci., 2001, 24, 1121–1159 Binder L.I., Guillozet-Bongaarts A.L., Garcia-Sierra F., Berry R.W., Tau, tangles, and Alzheimer’s disease, Biochim. Biophys. Acta, 2005, 1739, 216–223 Iqbal K.C., Alonso A., Chen S., Chohan M.O., El-Akkad E., Gong C.X., et al., Tau pathology in Alzheimer disease and other tauopathies, Biochim. Biophys. Acta, 2005, 1739, 198–210 Avila J., Tau phosphorylation and aggregation in Alzheimer’s disease pathology, FEBS Lett., 2006, 580, 2922–2927 Stoothoff W., Johnson G.V., Tau phosphorylation: physiological and pathological consequences, Biochim. Biophys. Acta, 2005, 1739, 280–297 Delacourte A., Sergeant N., Wattez A., Gauvreau D., Robitaille Y., Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation, Ann. Neurol., 1998, 43, 193–204 Sergeant N., Wattez A., Delacourte A., Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusive “exon 10” isoforms, J. Neurochem., 1999, 72, 1243–1249 Hutton M., Lewis J., Dickson D., Yen S.H., McGowan E., Analysis of tauopathies with transgenic mice, Trends Mol. Med., 2001, 7, 467–470 Jakes R., Novak M., Davison M., Wischik C.M., Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer’s disease, EMBO J., 1991, 10, 2725–2729 Crowther R.A., Olesen O.F., Smith M.J., Jakes R., Goedert M., Assembly of Alzheimer-like filaments from full-length tau protein, FEBS Lett., 1994, 337, 135–138 Brandt R., Leger J., Lee G., Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain, J. Cell Biol., 1995, 131, 1327–1340 Lee G., Newman S.T., Gard D.L., Band H., Panchamoorthy G., Tau interacts with src-family non-receptor tyrosine kinases, J. Cell Sci., 1998, 111, 3167–3177 Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., et al., Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. USA, 1998, 95, 6448–6453 Lee G., Thangavel R., Sharma V.M., Litersky J.M., Bhaskar K., Fang S.M., et al., Phosphorylation of tau by fyn: implications for Alzheimer’s disease, J. Neurosci., 2004, 24, 2304–2312 Ho G.J., Hashimoto M., Adame A., Izu M., Alford M.F., Thal L.J., et al., Altered p59Fyn kinase expression accompanies disease progression in Alzheimer’s disease: implications for its functional role, Neurobiol. Aging, 2005, 26, 625–635 Arendt T., Holzer M., Grossmann A., Zedlick D., Bruckner M.K., Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer’s disease, Neuroscience, 1995, 68, 5–18 Vincent I., Jicha G., Rosado M., Dickson D.W., Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain, J. Neurosci., 1997, 17, 3588–3598 Vincent I., Zheng J., Dickson D.W., Kress Y., Davies P., Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease, Neurobiol. Aging, 1998, 19, 287–296 Yang Y., Mufson E.J., Herrup K., Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease, J. Neurosci., 2003, 23, 2557–2563 Nixon, R.A., Cataldo A.M., Paskevitch P. A., Hamilton D.J., Wheelock T.R., Kanaley-Andrews L., The lysosomal system in neurons: involvement at multiple stages in Alzheimer’s disease pathogenesis, Ann. NY Acad. Sci., 1992, 674, 65–88 Cataldo A.M., Barnett J.L., Berman S.A., Li J., Quarless S., Bursztajn S., et al., Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system, Neuron, 1995, 14, 671–680 Yasojima K., Kuret J., DeMaggio A.J., McGeer E., McGeer P.L., Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain, Brain Res., 2000, 865, 116–120 Baumann K., Mandelkowa E.M., Biernata J., Piwnica-Wormsb H., Mandelkow E., Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin dependent kinases Cdk2 and Cdk5, FEBS Lett., 1993, 336, 417–424 Drewes G., Ebneth A., Preuss U., Mandelkow E.M., Mandelkow E., MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption, Cell, 1997, 89, 297–308 Yoshida H., Watanabe A., Ihara Y., Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer’s disease, J. Biol. Chem., 1998, 273, 9761–9768 de la Monte S.M., Ng S.C., Hsu D.W., Aberrant GAP-43 gene expression in Alzheimer’s disease, Am. J. Pathol., 1995, 147, 934–946 Caceres A., Kosik K.S., Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature, 1990, 343, 461–463 Mandell J., Banker G.A., A spatial gradient of tau protein phosphorylation in nascent axons, J. Neurosci., 1996, 16, 5727–5740 Biernat J., Mandelkow E.M., The development of cell processes induced by tau protein requires phosphorylation of Serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains, Mol. Biol. Cell, 1999, 10, 727–740 Biernat J., Wu Y.Z., Timm T., Zheng-Fischöfer Q., Mandelkow E., Meijer L., et al., Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity, Mol. Biol. Cell, 2002, 13, 4013–4028 Belkadi A., LoPresti P., Truncated tau with the Fyn-binding domain and without the microtubule-binding domain hinders the myelinating capacity of an oligodendrocyte cell line, J. Neurochem., 2008, 107, 351–360 Takei Y., Teng J., Harada A., Hirokawa N., Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, J. Cell Biol., 2000, 150, 989–1000 Corsellis J.A., Brierley J.B., Observations on the pathology of insidious dementia following head injury, J. Ment. Sci., 1959, 105, 714–720 Corsellis J.A., Bruton C.J., Freeman-Browne D., The aftermath of boxing, Psychol. Med., 1973, 3, 270–303 McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury, J. Neuropathol. Exp. Neurol., 2009, 68, 709–735 Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to beta-amyloid-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2002, 99, 6364–6369 King M.E., Kan H., Baas P.W., Erisir A., Glabe C., Bloom G.S., Taudependent microtubule disassembly initiated by prefibrillar betaamyloid, J. Cell Biol., 2006, 175, 541–546 Götz J., Probst A., Spillatini M.G., Schäfer T., Jakes R., Bürki K., et al., Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform, EMBO J., 1995, 14, 1304–1313 Brion J.P., Tremp G., Octave J.N., Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease, Am. J. Pathol., 1999, 54, 255–270 Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science, 1998, 282, 1914–1917 DeTure M., Ko L.W., Yen S., Nacharaju P., Easson C., Lewis J., et al., Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions, Brain Res., 2000, 853, 5–14 Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature, 1994, 369, 488–491 Tint I., Slaughter T., Fischer I., Black M.M., Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons, J. Neurosci., 1998, 18, 8660–8673 Amadoro G., Serafino A.L., Barbato C., Ciotti M.T., Sacco A., Calissano P., et al., Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons, Cell. Death Differ., 2004, 11, 217–230 Amadoro G., Ciotti M.T., Costanzi M., Cestari V., Calissano P., Canu N., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation, Proc. Natl. Acad. Sci. USA, 2006, 103, 2892–2897 Corsetti V., Amadoro G., Gentile A., Capsoni S., Ciotti M.T., Cencioni M.T., et al., Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer’s disease models, Mol. Cell. Neurosci., 2008, 38, 381–392 Horowitz P.M., LaPointe N., Guillozet-Bongaarts A.L., Berry R.W., Binder L.I., N-terminal fragments of tau inhibit full-length tau polymerization in vitro, Biochemistry, 2006, 45, 12859–12866 Gamblin T.C., Berry R.W., Binder L.I., Tau polymerization: role of the amino terminus, Biochemistry, 2003, 42, 2252–2257 Yin H., Kuret J., C-terminal truncation modulates both nucleation and extension phases of tau fibrillization, FEBS Lett., 2006, 580, 211–215 Zilka N., Filipcik P., Koson P., Fialova L., Skrabana R., Zilkova M., et al., Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo, FEBS Lett., 2006, 580, 3582–3588 Abraha A., Ghoshal N., Gamblin T. C., Cryns V., Berry R.W., Kuret J., et al., C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease, J. Cell Sci., 2000, 113, 3737–3745 Wang Y.P., Biernat J., Pickhardt M., Mandelkow E., Mandelkow E.M., Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model, Proc. Natl. Acad. Sci. USA, 2007, 104, 10252–10257 Guillozet-Bongaarts A.L., Garcia-Sierra F., Reynolds M.R., Horowitz P.M., Fu Y., Wang T., et al., Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease, Neurobiol. Aging, 2005, 26, 1015–22 Roberson E.D., Scearce-Levie K., Palop J.J., Yan F., Cheng I.H., Wu T., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model, Science, 2007, 316, 750–754 Folwell J., Cowan C.M., Ubhi K.K., Shiabh H., Newman T.A., Shepherd D., et al., Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer’s disease, Exp. Neurol., 2009, 223, 401–409 Mudher A., Lovestone S., Alzheimer’s disease-do tauists and baptists finally shake hands?, Trends Neurosci., 2002, 25, 22–26 He H.J., Wang X.S., Pan R., Wang D.L., Liu M.N., He R.Q., The proline rich domain of tau plays a role in interactions with actin, BMC Cell Biol., 2009, 10, 81–93 Perez M., Valpuesta J.M., Medina M., Montejo de Garcini E., J. Avila, Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction, J. Neurochem., 1996, 67, 1183–1190 Magnani E., Fan J., Gasparini L., Golding M., Williams M., Schiavo G., et al., Interaction of tau protein with the dynactin complex, EMBO J., 2007, 26, 4546–4554 Fulga T.A., Elson-Schwab I., Khurana V., Steinhilb M.L., Spires T.L., Hyman B.T., et al., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nat. Cell Biol., 2007, 9, 139–148 Blard O., Feuillette S., Bou J., Chaumette B., Frebourg T., Campion D., et al., Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila, Hum. Mol. Genet., 2007, 16, 555–566 Lee G., Tau and src family tyrosine kinases, Biochim. Biophys. Acta, 2005, 1739, 323–330 Lu P.J., Wulf G., Zhou X.Z., Davies P., Lu K.P., The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, Nature, 1999, 399, 784–788 Dickey C.A., Yue M., Lin W.L., Dickson D.W., Dunmore J.H., Lee W.C., et al., Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species, J. Neurosci., 2006, 26, 6985–6996 Sarkar M., Kuret J., Lee G., Two motifs within the tau microtubule binding domain mediate its association with the hsc70 molecular chaperone, J. Neurosci. Res., 2008, 86, 2763–2773 Makrides V., Shen T.E., Bhatia R., Smith B.L., Thimm, J., Lal, R., et al., Microtubule-dependent oligomerization of tau, Implications for physiological tau function and tauopathies, J. Biol. Chem., 2003, 278, 33298–33304 Wang J.Z., Grundke-Iqbal I., Iqbal K., Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration, Eur. J. Neurosci., 2007, 25, 59–68 Samsonov A., Yu J.Z., Rasenick M., Popov S.V., Tau interaction with microtubules in vivo, J. Cell Sci., 2004, 117,25, 6129–6141 Mocanu M.M., Nissen A., Eckermann K., Khlistunova I., Biernat J., Drexler D., et al., The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy, J. Neurosci., 2008, 28, 737–748 Nixon, R.A., Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases, Neurobiol. Aging, 2005, 26, 373–382 Nixon R.A., Wegiel J., Kumar A., Yu W.H., Peterhoff C., Cataldo A., et al., Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study, J. Neuropathol. Exp. Neurol., 2005, 64, 120–122 Boland B.A., Kumar A., Lee F.M., Platt J., Wegiel J., Yu W.H., et al., Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease, J. Neurosci., 2008, 28, 6926–6937 Park S.Y., Ferreira A., The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloidinduced neurodegeneration, J. Neurosci., 2005, 25, 5365–5375 Gomez-Ramos A., Diaz-Hernandez M., Cuadros R., Hernandez F., Avila J., Extracellular tau is toxic to neuronal cells, FEBS Lett., 2006, 580, 4842–4850 Gómez-Ramos A., Díaz-Hernández M., Rubio A., Miras-Portugal M.T., Avila J., Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Mol. Cell. Neurosci., 2008, 37, 673–681 Braak E., Braak H., Mandelkow E.M., A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads, Acta Neuropathol., 1994, 87, 554–567 Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., et al., Tau suppression in a neurodegenerative mouse model improves memory function, Science, 2005, 309, 476–481 Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., et al., Accumulation of pathological tau species and memory loss in a conditional model of tauopathy, J. Neurosci., 2007, 27, 3650–3662 Hall G.F., Chu B., Lee G., Yao J., Human tau filaments induce microtubule and synapse loss in vertebrate central neurons, J. Cell Sci., 2000, 120, 1373–1387 Wittmann C.W., Wszolek M.F., Shulman J.M., Salvaterra P.M., Lewis J., Hutton M., et al., Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles, Science, 2001, 293, 5530, 711–714 Lee S., Jung C., Lee G, Hall G.F., Tauopathy mutants P301L, G272V, R406W and V337M accelerate neurodegeneration in the lamprey in situ cellular tauopathy model, J. Alzheimers Dis., 2009, 16, 99–111 Yeh P., Chang C., Phosphorylation alters tau distribution and elongates life span in Drosophila, J. Alzheimers Dis., 2010, 21, 543–556 Chatterjee S., Sang T.K., Lawless G.M., Jackson G.R., Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model, Hum. Mol. Genet., 2009, 18, 164–177 Maeda S., Sahara N., Saito Y., Murayama M., Yoshiike Y., Kim H., et al., Granular tau oligomers as intermediates of tau filaments, Biochemistry, 46, 3856–3861 Maeda S., Sahara N., Saito Y., Murayama S., Ikai A., Takashima A., Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease, Neurosci. Res., 2006, 54, 197–201 Sahara N., Maeda S., Takashima A., Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration, Curr. Alz. Res., 2008, 5, 591–598 Bretteville A., Planel E., Tau aggregates: toxic, inert, or protective species?, J. Alzheimers Dis., 2008, 14, 431–436 Patterson K.C., Remmer Y., Fu S., Brooker N., Kanaan L., Vana S., et al., Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease, J. Biol. Chem., 2011, 286, 23063–23076 Iliev A.I., Ganesan S., Bunt G., Wouters F.S., Removal of patternbreaking sequences in microtubule binding repeats produces instantaneous tau aggregation and toxicity, J. Biol. Chem., 2006, 281, 37195–37204 Lasagna-Reeves C.A., Castillo-Carranza D.L., Guerrero-Muoz M.J., Jackson G.R., Kayed R., Preparation and characterization of neurotoxic tau oligomers, Biochemistry, 2010, 49, 10039–10041 Andorfer C., Acker C.M., Kress Y., Hof P.R., Duff K., Davies P., Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms, J. Neurosci., 2005, 225, 5446–5545 Ambegaokar S., Jackson G., Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation, Hum. Mol. Genet., 2011, 20, 4947–4977 Pei J.J., Grundke-Iqbal I., Iqbal K., Bogdanovic N., Winblad B., Cowburn R.F., Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration, Brain Res., 1998, 797, 267–277 Stone J.G., Siedlak S.L., Tabaton M., Hirano A., Castellani R.J., Santocanale C., et al., The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies, J. Neuropathol. Exp. Neurol., 2011, 70, 578–587 Morsch R., Simon W., Coleman P.D., Neurons may live for decades with neurofibrillary tangles, J. Neuropathol. Exp. Neurol., 1999, 58, 188–197 Bobinski M., Wegiel J., Tarnawski M., Bobinski M., Reisberg B., de Leon M.J., et al., Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease, J. Neuropathol. Exp. Neurol., 1997, 56, 414–420 Müller W., Eckert A., Kurz C., Eckert G., Leuner K., Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease — therapeutic aspects, Mol. Neurobiol., 2010, 41, 159–171 Swerdlow R.H., Khan S.M., A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 2004, 63, 8–20 Fang Y., Wu N., Gan X., Yan W., Morrell J. C., Gould, S.J., Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes, PLoS Biol., 2007, 5, e158 Vega I.E., Cui L., Propst J.A., Hutton M.L., Lee G., Yen S.H., Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates, Mol. Brain Res., 2005, 138, 135–144 Sverdlov M., Shajahan A.N., Minshall R.D., Tyrosine phosphorylationdependence of caveolae-mediated endocytosis, J. Cell. Mol. Med., 2007, 11, 1239–1250 Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J. Biol. Chem., 2012, 287, 3842–3849 Zehe C., Engling A., Wegehingel S., Schäfer T., Nickel W., Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2, Proc. Natl. Acad. Sci. USA, 2006, 103, 15479–15484 Goedert M., Jakes R., Spillantini M.G., Hasegawa M., Smith M.J., Crowther R.A., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, 1996, 383, 550–553 Gray E.G., Paula-Barbosa M., Roher A., Alzheimer’s disease: paired helical filaments and cytomembranes, Neuropathol. Appl. Neurobiol., 1987, 13, 91–110 Fath T., Eidenmüller J., Brandt R., Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease, J. Neurosci., 2002, 22, 9733–9741 Barré P., Eliezer D., Folding of the repeat domain of tau upon binding to lipid surfaces, J. Mol. Biol., 2006, 362, 312–326 Wilson D.M., Binder, L.I., Free fatty acids stimulate the polymerization of tau and amyloid beta peptides, Am. J. Pathol., 1997, 161, 2321–2335 Chirita C.N., Necula M., Kuret J., Anionic micelles and vesicles induce tau fibrillization in vitro, J. Biol. Chem., 2003, 278, 25644–25650 Kampers T., Friedhoff P., Biernat J., Mandelkow E.M., RNA stimulates aggregation of microtubule-associated protein-tau into Alzheimerlike paired helical filaments, FEBS Lett., 1997, 399, 344–349 Hall G.F., What is the common link between protein aggregation and interneuronal lesion propagation in neurodegenerative disease?, In: Chang R. (Ed.) Neurodegenerative diseases — processes, prevention, protection and monitoring, InTech, 2011, 1–17 Farah C.A., Perreault S., Liazoghli D., Desjardins M., Anton A., Lauzon M., et al., Tau interacts with Golgi membranes and mediates their association with microtubules, Cell Motil. Cytoskeleton, 2006, 63, 710–724 Liazoghli D., Perreault S., Micheva K.D., Desjardins M., Leclerc N., Fragmentation of the Golgi apparatus induced by overexpression of WT and mutant human tau forms in neurons, Am. J. Pathol., 2005, 166, 1499–1514 Kim W., Lee S., Hall G.F., Secretion of human tau fragments resembling CSF-tau in Alzheimer’s disease is modulated by the presence of the exon 2 insert, FEBS Lett., 2010, 584, 3085–3088 Lee S., Kim W., Li Z., Hall G.F., Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model, Int. J. Alzheimers Dis., 2012, 172837 Hamano T., Gendron T.F., Causevic E., Yen S.H., Lin W.L., Isidoro C., et al., Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression, Eur. J. Neurosci., 2008, 27, 1119–11130 Abrahamsen H., Stenmark H., Protein secretion: unconventional exit by exophagy, Curr. Biol., 2011, 20, R415–R418 Funk K., Kuret J., Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer’s disease pathology, Int. J. Alzheimers Dis., 2012, 752894 Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 2009, 11, 909–913 Liu L., Drouet V., Wu J.W., Witter M.P., Small S.A., Clell C., et al., Trans-synaptic spread of tau pathology in vivo, PloS One, 2012, 7, e31302 deCalignon A., Polydoro M., Suárez-Calvet M., William C., Adamowicz D.H., Kopeikina K.J., et al., Propagation of tau pathology in a model of early Alzheimer’s disease, Neuron, 2012, 73, 685–697 Morrison J.H., Hof P.R. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease, Prog. Brain Res., 2002, 136, 467–486 Ko L.W., Rush T., Sahara N., Kersh J.S., Easson C., Deture M., et al., Assembly of filamentous tau aggregates in human neuronal cells, J. Alzheimers Dis., 2004, 6, 605–622 http://www.alzgene.org/ Jensen L.J., Kuhn M., Stark M., Chaffron S., Creevey C. Muller J., et al., STRING 8 — a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res., 2009, 37(Database issue), D412–D416 Mathivanan S., Fahner C.J., Reid G.E., Simpson R.J., ExoCarta, 2012, database of exosomal proteins, RNA and lipids, Nucleic Acids Res., 2012, 40(Database issue), D1241–1244 Hall G.F., Lee S., Yao J., Neurofibrillary degeneration can be arrested in an in vivo cellular model of human tauopathy by application of a compound which inhibits tau filament formation in vitro, J. Mol. Neurosci., 2002, 19, 253–260 Kim W., Lee S., Jung C., Ahmed A., Lee G., Hall G.F., Interneuronal transfer of human tau between lamprey central neurons in situ, J. Alzheimers Dis., 2010, 19, 647–664 Le M.N., Kim W., Lee S., McKee A.C., Hall G.F., Multiple mechanisms of extracellular tau spreading in a non-transgenic tauopathy model, Am. J. Neurodegener. Dis., 2012, 1, 316–333 Hall G.F., Saman S., Secretion or death? What is the significance of elevated CSF-tau in early AD?, Comm. Integr. Biol., 2012, 5, 1–4 Frost B., Jacks R.L., Diamond M.I., Propagation of tau misfolding from the outside to the inside of a cell, J. Biol. Chem., 2009, 284, 12845–12852 Honson N.S., Jensen J.R., Abraha A., Hall G.F., Kuret J., Small-molecule mediated neuroprotection in an in situ model of tauopathy, Neurotox. Res., 2009, 15, 274–283 Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., et al., Alzheimer’s disease beta-amyloid peptides are released in association with exosomes, Proc. Natl. Acad. Sci. USA, 2006, 103, 11242–11247 Emmanouilidou E., Melachroinou K., Roumeliotis T., Garbis S.D., Ntzouni M., Margaritis L.H., et al., Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival, J. Neurosci., 2010, 30, 6838–6851 Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., et al., Cells release prions in association with exosomes, Proc. Natl. Acad. Sci. USA, 2004, 101, 9683–9688 Soto C., Estrada L., Protein misfolding and neurodegeneration, Arch. Neurol., 2008, 65, 184–189 Aguzzi A., Sigurdson C., Heikenwaelder M., Molecular mechanisms of prion pathogenesis, Annu. Rev. Pathol., 3, 11–40 Novak P., Prcina M., Kontsekova E., Tauons and prions: infamous cousins?, J. Alzheimers Dis., 2011, 26, 413–430 Su J.H., Deng G., Cotman C.W., Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation, Neurobiol. Dis., 1997, 4, 365–375 Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of cerebral cortical lesions in patients with corticobasal degeneration, Neurosci. Lett., 1999, 268, 5–8 Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of Pick bodies in Pick’s disease, Neurosci. Lett., 1998, 242, 81–84 Armstrong R.A., Cairns N.J., Lantos P.L., What does the study of spatial patterns tell us about the pathogenesis of neurodegenerative disorders?, Neuropathology, 2001, 21, 1–12 McKee A.C., Stern R.A., Nowinski C., Stein T., Alvarez V.E., Daneshvar D., et al., The spectrum of disease in chronic traumatic encephalopathy, Brain, 2013, 136, 43–64 Guo J.L., Lee V.M.Y., Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles, J. Biol. Chem., 2011, 286, 15317–15331 Kfoury N., Holmes B.B., Jiang H., Holtzman D.M., Diamond M.I., Transcellular propagation of tau aggregation by fibrillar species, J. Biol. Chem., 2012, 287, 19440–19451 Wu J.W., Herman M., Liu L., Simoes S., Acker C.M., Figueroa H., et al., Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons, J. Biol. Chem., 2013, 288, 1856–1870 Iba M., Guo J.L., McBride J.D., Zhang B., Trojanowski J.Q., Lee V.M., Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy, J. Neurosci., 2013, 33, 1024–1037 Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., et al., Alzheimer brainderived tau oligomers propagate pathology from endogenous tau, Sci. Rep., 2012, 2, 700 Hall G.F., Patuto B.A., Is tau now ready for admission to the prion club?, Prion, 2012, 6, 223–233 Canu N., Filesi I., Pristerà A., Ciotti M.T., Biocca S., Altered intracellular distribution of PrPC and impairment of proteasome activity in tau overexpressing cortical neurons, J. Alzheimers Dis., 2011, 27, 603–613 Litman P., Barg J., Rindzoonski L., Ginzburg I., Subcellular localization of tau mRNA in differentiating neuronal cell culture: Implications for neuronal polarity, Neuron, 1993, 10, 627–638 Aronov S., Aranda G., Behar L., Ginzberg I., Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targetting signal, J. Neurosci., 2001, 21, 6577–6587 Schraen-Maschke S., Dhaenens C.M., Delacourte A., Sablonniere B., Microtubule-associated protein tau gene: a risk factor in human neurodegenerative diseases, Neurobiol. Dis., 2004, 15, 449–460 Caffrey T, Joachim C., Wade-Martins R., Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus, Neurobiol. Aging, 2008, 29, 1923–1929 Wegiel J., Gong C.X., Hwang Y.W., The role of DYRK1A in neurodegenerative diseases, FEBS J., 2011, 278, 236–245 McNaughton D., et al., Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series, Neurobiol. Aging, 2012, 33, 426.e13–e21 Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S, et al., Detection of blast-related traumatic brain injury in U.S. military personnel, N. Engl. J. Med., 2011, 364, 2091–2100 Hall G.F., Poulos A., Cohen M.J., Sprouts emerging from the dendrites of axotomized lamprey central neurons have axonlike ultrastructure, J. Neurosci., 1989, 9, 588–599 Hall G.F., Yao J., Selzer M., Kosik K.S., Cytoskeletal correlates to cell polarity loss following axotomy of lamprey central neurons, J. Neurocytol., 1997, 26, 733–753 Rose P.K., MacDermid V., Joshi M., Neuber-Hess M., Emergence of axons from distal dendrites of adult mammalian neurons following a permanent axotomy, Eur. J. Neurosci., 2001, 13, 1166–1176 Singleton R.H., Zhu J., Stone J.R., Povlishock J.T., Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death, J. Neurosci., 2002, 22, 791–802 Amadoro G., Corsetti V., Stringaro A., Colone M., D’Aguanno S., Meli G., et al., A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration, J. Alzheimers Dis., 2010, 21, 445–470 Thies E., Mandelkow E.M., Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1, J. Neurosci., 2007, 27, 2896–2907 Kins S., Crameri A., Evans D.R., Hemmings B.A., Nitsch R.M., Götz J., Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice, J. Biol. Chem., 2001, 276, 38193–38200 Lazarov O., Lee M., Peterson D.A., Sisodia S.S.,Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice, J. Neurosci., 2002, 22, 9785–9793 Klein W.L., Synaptic targeting by Abeta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease, Alzheimers Dement., 2006, 2, 43–55 Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, 416, 535–539 Tsai J., Grutzendler J., Duff K., Gan W.B., Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches, Nat. Neurosci., 2004, 7, 1181–1183 Boekhoorn K., Terwel D., Biemans B., Borghgraef P., Wiegert O., Ramakers G.J., et al., Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy, J. Neurosci., 2006, 26, 3514–3523 Zempel H., Thies E., Mandelkow E., Mandelkow E.M., A beta oligomers cause localized Ca2+ elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines, J. Neurosci., 2010, 30, 11938–11950 Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models, Cell, 2010, 142, 387–397 Tackenberg C., Brandt R., Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, J. Neurosci., 2009, 29, 14439–14450 Luebke J.I., Weaver C.M., Rocher A.B., Rodriguez A., Crimins J.L., Dickstein D.L., et al., Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models, Brain Struct. Funct., 2010, 214, 181–199 Boekhoorn K., Joels M., Lucassen P.J., Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus, Neurobiol. Dis., 24, 1–14, 2006 Hu W.T., Holtzman D.M., Fagan A.M., Shaw L.M., Perrin R., Arnold S.E., et al., Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease, Neurology, 2012, 79, 897–905 Clinton L.K., Blurton-Jones M., Myczek K., Trojanowski J.Q., LaFerla F.M., Synergistic interactions between Abeta, tau, and alphasynuclein: acceleration of neuropathology and cognitive decline, J. Neurosci., 2010, 30, 7281–7289 Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., et al., Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton, J. Neurosci., 1991, 11, 1748–1755 Ihara Y., Massive somatodendritic sprouting of cortical neurons in Alzheimer’s Disease, Brain Res., 1988, 459, 138–144 Uchida Y., Ohshima T., Sasaki Y., Suzuki H., Yanai S., Yamashita N., et al., Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease, Genes Cells, 2005, 10, 165–179 Arimura N., Kaibuchi K., Neuronal polarity: from extracellular signals to intracellular mechanisms, Nat. Rev. Neurosci., 2007, 8, 194–205 Leugers C.J., Lee G., Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signaling and neurite initiation without a requirement for microtubule binding, J. Biol. Chem., 2010, 285, 19125–19134 Cowan C.M., Shepherd D., Mudher A., Insights from Drosophila models of Alzheimer’s disease, Biochem. Soc. Trans., 2010, 38,4, 988–992 Mudher A., Shepherd D., Newman T.A., Mildren P., Jukes J.P., Squire A., et al., GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila, Mol. Psychiatry, 2004, 9, 522–530 Khurana V., Feany M.B., Connecting cell-cycle activation to neurodegeneration in Drosophila, Biochim. Biophys. Acta, 2007, 1772, 446–456 Hall G.F., The biology and pathobiology of tau protein, In: Kavallaris M. (Ed.), The cytoskeleton and human disease, Springer, 2012, 285–313 Tian A.G., Deng W.M., Par-1 and tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes, Dev. Biol., 2009, 327, 458–464 Li S., Mallory M., Alford M., Tanaka S., Masliah E., Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression, J. Neuropathol. Exp. Neurol., 1997, 56, 901–911 Gorlovoy P., Larionov S., Pham T.T.H., Neumann H., Accumulation of tau induced in neurites by microglial proinflammatory mediators, FASEB J., 2009, 23, 2502–2513 Maxwell W.L., McCreath B.J., Graham D.I., Gennarelli T.A., Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury, J. Neurocytol., 1995, 24, 925–42 Jafari S.S., Maxwell W.L., Neilson M., Graham D.I., Axonal cytoskeletal changes after non-disruptive axonal injury, J. Neurocytol., 1997, 26, 207–221 Uryu K., Chen X.H., Martinez D., Browne K.D., Johnson V.E., Graham D.I., et al., Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans, Exp. Neurol., 2007, 208, 185–192 Goldstein L.G., Fisher A., Tagge C., Wojnarowicz M.W., Zhang X.L., Sullivan J.S., et al., Blast exposure induces chronic traumatic encephalopathy and persistent defects in axonal conduction, synaptic plasticity, and hippocampal memory, Sci. Transl. Med., 2012, 4, 134ra60 Iijima-Ando K., Sekiya M., Maruko-Otake A., Ohtake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes taumediated neurodegeneration and Alzheimer’s diseaserelated tau phosphorylation via PAR-1, PLoS Genet., 2012, 8, e1002918 Craig A.M., Graf E.R., Linhoff M.W., How to build a central synapse: clues from cell culture, Trends Neurosci., 2006, 29, 8–20 Perez M.R., Zheng H., Lex H., Van der Ploeg T., Koo E., The betaamyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity, J. Neurosci., 1997, 17, 9407–9414 LaPointe N.E., Morfini G., Pigino G., Gaisina I.N., Kozikowski A.P., Binder L.I., et al., The amino terminus of tau inhibits kinesin dependent axonal transport: implications for filament toxicity, J. Neurosci. Res., 2009, 87, 440–451 Pérez M., Cuadros R., Benítez M.J., Jiménez J.S., Interaction of Alzheimer’s disease amyloid ß peptide fragment 25–35 with tau protein, and with a tau peptide containing the microtubule binding domain, J. Alzheimers Dis., 2004, 6, 461–467 Rank K.B., Pauley A.M., Bhattacharya K., Wang Z., Evans D.B., Fleck T.J., et al., Direct interaction of soluble human recombinant tau protein with Abeta 1–42 results in tau aggregation and hyperphosphorylation by tau protein kinase II, FEBS Lett., 2002, 514, 263–268 Guo J.T., Arai J., Miklossy J., McGeer P., Tau forms soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2006, 103, 1953–1958 Funk K.E., Mrak R.E., Kuret J., Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles, Neuropathol. Appl. Neurobiol., 2011, 37, 295–306