Giải mã mối liên hệ phức tạp giữa mái che xanh đô thị, chỉ số xây dựng và nhiệt độ bề mặt bằng phương pháp địa không gian: một nghiên cứu cấp vi mô của Ủy ban Thành phố Kolkata cho thành phố bền vững

Md Babor Ali1, Saleha Jamal1, Manal Ahmad1, Mohd Saqib1
1Aligarh Muslim University, Aligarh, India

Tóm tắt

Bài báo nghiên cứu đi sâu vào bối cảnh của việc sử dụng đất đô thị và sự thay đổi cấu trúc đất (LULC), đặc biệt tập trung vào sự mở rộng xây dựng, và làm nổi bật những tác động đáng kể đến nhiệt độ bề mặt đất (LST) và hiện tượng đảo nhiệt đô thị (UHI). Nghiên cứu này nhằm giải mã những mối liên hệ phức tạp giữa lớp phủ xanh đô thị, chỉ số xây dựng, và nhiệt độ bề mặt, cụ thể trong giới hạn không gian của Ủy ban Thành phố Kolkata. Mục tiêu chính là hiểu rõ cách mà việc chuyển đổi không gian xanh thành các khu vực xây dựng ảnh hưởng đến nhiệt độ bề mặt đất và do đó, ảnh hưởng đến hiệu ứng đảo nhiệt đô thị. Áp dụng phương pháp địa không gian, nghiên cứu sử dụng chỉ số thực vật phân biệt chuẩn hóa (NDVI), chỉ số xây dựng phân biệt chuẩn hóa (NDBI), và dữ liệu nhiệt độ bề mặt đất (LST) được trích xuất từ hình ảnh Landsat trải rộng qua bốn thời điểm (1990, 2000, 2010, và 2020). Phân tích cấp quận cung cấp góc nhìn ở cấp vi mô trong không gian đô thị hạn chế của Ủy ban Thành phố Kolkata. Các phân tích tương quan và biểu đồ phân tán được sử dụng như một công cụ để kiểm tra những mối quan hệ phức tạp giữa các biến số này, cung cấp một phương pháp luận vững chắc cho cuộc điều tra. Nghiên cứu nhấn mạnh tác động đáng kể của đô thị hóa đối với khu vực nghiên cứu, tiết lộ một xu hướng nhất quán trong việc chuyển đổi không gian xanh thành các khu vực xây dựng trong suốt các thập kỷ đã nghiên cứu. Sự chuyển đổi này đã dẫn đến sự giảm sút trong lớp phủ xanh và sự gia tăng đồng thời của nhiệt độ bề mặt. Nghiên cứu khám phá những mối tương quan và mô hình thuyết phục thông qua các phân tích NDVI, NDBI, và LST, nhấn mạnh tính cấp bách của việc thu hút sự chú ý nghiêm túc từ các nhà quy hoạch đô thị, các nhà bảo vệ môi trường, và các nhà sinh thái học. Các phát hiện chỉ ra nhu cầu cấp bách trong việc phát triển các khung chính sách phù hợp để đảm bảo sự bền vững và sức khỏe trong tương lai của các thành phố.

Từ khóa

#đô thị hóa #nhiệt độ bề mặt #lớp phủ xanh đô thị #chỉ số xây dựng #hiện tượng đảo nhiệt đô thị #kiểm tra không gian #nền tảng chính sách bền vững

Tài liệu tham khảo

Ajmal U, Jamal S, Ahmad WS, Ali MA, Ali MB (2022) Waterborne diseases vulnerability analysis using fuzzy analytic hierarchy process: a case study of Azamgarh city India. Model Earth Syst Environ 8(2):2687–2713 Alavipanah S, Wegmann M, Qureshi S, Weng Q, Koellner T (2015) The role of vegetation in mitigating urban land surface temperatures: a case study of Munich Germany during the Warm Season. Sustainability 7(4):4689–4706 Asgarian A, Amiri BJ, Sakieh Y (2015) Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystem 18(1):209–222. https://doi.org/10.1007/s11252-014-0387-7 Badarinath KVS, Kiran Chand TR, Madhavilatha K, Raghavaswamy V (2005) Studies on urban heat islands using envisat AATSR data. J Indian Soc Remote Sens 33(4):495–501 Becker F, Li Z-L (1990) Toward a local split-window method over land surface. Int J Remote Sens 11(3):369–393. https://doi.org/10.1080/01431169008955028 Bindi M, Brandani G, Dessì A, Dibari C, Ferrise R, Moriondo M, Trombi G (2009) Impact of climate change on agricultural and natural ecosystems. Am J Environ Sci 5(5):633–638 Buyadi S, Mohd W, Misni A (2013) Impact of land use changes on the surface temperature distribution of area surrounding the National Botanic Garden, Shah Alam. Procedia Soc Behav Sci 101:516–525 Carrus G, Scopelliti M, Lafortezza R, Colangelo G et al (2015) Go greener, feel better? The positive efects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc Urban Plan 134:221–228. https://doi.org/10.1016/j.landurbplan.2014.10.022 Chadchan J, Shankar R (2012) An analysis of urban growth trends in the post-economic reforms period in India. Int J Sustain Built Environ 1(1):36–49 Chen YH, Wang J, Li XB (2002) A study on urban thermal field in summer based on satellite remote sensing. Remote Sens Land Resour 4(1) Chen XL, Zhao HM, Li PX, Yin ZY (2006) Remote sensing imagebased analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146 Chudnovsky A, Ben-Dor E, Saaroni H (2004) Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build 36:1063–1074. https://doi.org/10.1016/j.enbuild.2004.01.052 Demographia world urban areas 13th annual edition. (2017). doi: https://demographia.com/dbworldua-index.htm Deng C, Wu C (2012) BCI: a biophysical composition index for remote sensing of urban environments. Remote Sens Environ 127:247–259. https://doi.org/10.1016/j.rse.2012.09.009 Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159(8–9):2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010 Feng H, Liu H, Wu L (2014) Monitoring the relationship between the land surface temperature change and urban growth in Beijing China. IEEE J Sel Top Appl Earth Obs Remote Sens 7(10):4010–4019 Gairola S, Noresah MS (2010) Emerging trend of urban green space research and the implications for safeguarding biodiversity: a viewpoint. Nat Sci 8(7):43–49 Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266 García DH, Riza M, Díaz JA (2023) Land surface temperature relationship with the land use/land cover indices leading to thermal field variation in the Turkish Republic of Northern Cyprus. Earth Syst Environ 7(2):561–580 Guo G, Wu Z, Xiao R, Chen Y (2015) Landscape and urban planning impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc Urban Plan 135:1–10. https://doi.org/10.1016/j.landurbplan.2014.11.007 Hang HT, Rahman A (2018) Characterization of thermal environment over heterogeneous surface of National Capital Region (NCR), India using LANDSAT-8 sensor for regional planning studies Urban Climate:1–18 https://doi.org/10.1016/j.uclim.2018.01.001 Hang HT, Rahman A (2018b) Characterization of thermal environment over heterogeneous surface of National Capital Region (NCR), India using LANDSAT-8 sensor for regional planning studies. Urban Climate 24:1–18. https://doi.org/10.1016/j.uclim.2018.01.001 Hao P, Niu Z, Zhan Y, Wu Y, Wang L, Liu Y (2016) Spatiotemporal changes of urban impervious surface area and land surface temperature in Beijing from 1990 to 2014. Gisci Remote Sens 53(1):63–84. https://doi.org/10.1080/15481603.2015.1095471 Hartmann DL, Tank AM GK, & Rusticucci M (2013) IPCC 5th assessment report, climate change 2013: the physical science basis. In Paper presented at the IPCC S Jamal MB Ali 2023 Determining urban growth in response to land use dynamics using multilayer perceptron and Markov chain models in a metropolitan city: past and future Environ Dev Sustain 1 27 Jamal S, Ahmad WS, Ajmal U, Aaquib M, Ashif Ali M, Babor Ali M, Ahmed S (2022a) An integrated approach for determining the anthropogenic stress responsible for degradation of a Ramsar Site-Wular Lake in Kashmir India. Mar Geodesy 45(4):407–434 Jamal S, Ali MB, Ali MA, Ajmal U (2022b) Evaluation and distribution of urban green spaces in Kolkata Municipal Corporation: an approach to urban sustainability. Towards sustainable natural resources: monitoring and managing ecosystem biodiversity. Springer International Publishing, Cham, pp 151–172 Jamal S, Saqib M, Ahmad WS, Ahmad M, Ali MA, Ali MB (2023) Unraveling the complexities of land transformation and its impact on urban sustainability through land surface temperature analysis. Appl Geomatics 15(3):719–41 Jim CY, Chen WY (2008) Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J Environ Manage 88(4):665–676 Karuppannan S, Baharuddin ZM, Sivam A, Daniels CB (2014) Urban green space and urban biodiversity: Kuala Lumpur Malaysia. J Sustain Dev 7(1). https://doi.org/10.5539/jsd.v7n1p1 Kaufmann RK, Zhou L, Myneni RB, Tucker CJ, Slayback D, Shabanov NV, Pinzon J (2003) The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data. Geophys Res Lett 30 (22) Konijnendijk CC, Annerstedt M, Nielsen AB & Maruthaveeran S (2013) Benefts of urban parks. A systematic review A Report for IFPRA, Copenhagen & Alnarp. https://www.forskningsdatabasen.dk/ en/catalog/2389131353 Kumar KS, Bhaskar PU, Padma Kumari K (2012) Estimation of land surface temperature to study urban heat island effect using Landsat ETM + IMAGE. Int J Eng Sci Technol 4(02):771–778 Li CH, Yang ZF (2004) Spatio-temporal changes of NDVI and their relations with precipitation and Run of in the Yellow River Basin. Geogr Res 23:753–759 Li X, Chen G, Liu X, Liang X, Wang S, Chen Y, Xu X (2017) A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Ann Am Assoc Geogr 107(5):1040–1059 Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. John Wiley & Sons Loehle C, Scafetta N (2011) Climate change attribution using empirical decomposition of climatic data. Open Atmos Sci J 5:1–4. https://doi.org/10.2174/1874282301105010074 Ma Y, Kuang Y, Huang N (2010) Coupling urbanization analyzes for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+imagery. Int J Appl Earth Obs Geoinf 12(2):110–118. https://doi.org/10.1016/j.jag.2009.12.002 Mallick J, Kant Y, Bharath BD (2008) Estimation of land surface temperature over Delhi using Landsat-7 ETM. J Ind Geophys Union 12(3):131–140 Mallick J, Rahman A, Singh CK (2013) Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using nighttime ASTER satellite data in highly urbanizing city, Delhi-India. Adv Space Res 52:639–655. https://doi.org/10.1016/j.asr.2013.04.025 Mass JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152 Mathew A, Sreekumar S, Khandelwal S, Kaul N, Kumar R (2016) Prediction of surface temperatures for the assessment of urban heat island efect over Ahmedabad city using linear time series model. Energy Build 128:605–616. https://doi.org/10.1016/j.enbuild.2016.07.004 McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890 Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149. https://doi.org/10.1016/j.apgeog.2013.01.009 Mohammad P, Goswami A (2022) Predicting the impacts of urban development on seasonal urban thermal environment in Guwahati city, northeast India. Build Environ 226:109724 Mohan M, Kandya A (2015) Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data. Sci Total Environ 506:453–465. https://doi.org/10.1016/j.scitotenv.2014.11.006 Morton FI (1983) Operational estimates of areal evapotranspiration and their signifcance to the science and practice of hydrology. J Hydrol 66(1–4):1–76. https://doi.org/10.1016/0022-1694(83)90177-4 Mushore T, Mutanga O, Odindi J, Dube T (2017) Linking major shifts in land surface temperatures to long term land use and land cover changes: a case of Harare, Zimbabwe. Urban Climate 20:120–134. https://doi.org/10.1016/j.uclim.2017.04.005 Naikoo MW, Islam ARMT, Mallick J, Rahman A (2022) Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Climate 41:101052 Nayak S, & Mandal M 2012 Impact of land-use and land-cover changes on temperature trends over western India. Current Science, 102 https://www.jstor.org/stable/24107759 Nowak DJ, Robert III E, Crane DE, Stevens JC, & Fisher CL (2010) Assessing urban forest efects and values, Chicago’s urban forest Resour Bull NRS-37 (pp. 1–27). Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station 27 Oliveira S, Andrade H, Vaz T (2011) The cooling efect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46(11):2186–2194. https://doi.org/10.1016/j.buildenv.2011.04.034 Oliveira S, Andrade H, Vaz T (2011b) The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46(11):2186–2194 Owen LA, Pickering KT, Pickering KT (2006) An introduction to global environmental issues. Routledge Pandey B, Seto KC (2015) Urbanization and agricultural land loss in India: comparing satellite estimates with census data. J Environ Manag 148:53–66 Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside UK. Landsc Urban Plan 71(2–4):295–310 Rai PK (2016) Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicol Environ Saf 129:120–136. https://doi.org/10.1016/j.ecoenvol2016.03.012 Rinner C, Hussain M (2011) Toronto’s urban heat island-exploring the relationship between land use and surface temperature. Remote Sens 3(6):1251–1265. https://doi.org/10.3390/rs3061251 Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate: the biological environment. Wiley, Hoboken Rosenzweig C, Solecki W, & Slosberg R 2006 Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. A report to the New York State Energy Research and Development Authority Rotem-Mindali O, Michael Y, Helman D, Lensky IM (2015) The role of local land-use on the urban heat island efect of Tel Aviv as assessed from satellite remote sensing. Appl Geogr 56:145–153. https://doi.org/10.1016/j.apgeog.2014.11.023 Salman MA (2004) A modelling approach to cumulative efects assessment for rehabilitation of remnant vegetation. PhD Thesis. SRES, The Australian National University, Canberra, Australia Sannigrahi S, Bhatt S, Rahmat S, Uniyal B, Banerjee S, Chakraborti S et al (2018) Analyzing the role of biophysical compositions in minimizing urban land surface temperature and urban heating. Urban Climate 24:803–819. https://doi.org/10.1016/j.uclim.2017.10.002 Sarif MO, Gupta RD, Murayama Y (2022) Assessing local climate change by spatiotemporal seasonal LST and six land indices, and their interrelationships with SUHI and hot–spot dynamics: a case study of Prayagraj City, India (1987–2018). Remote Sens 15(1):179 Sertel E, Ormeci C, Robock A (2011) Modelling land cover change impact on the summer climate of the Marmara region Turkey. Int J Glob Warm 3(1/2):194 Shahfahad Bindajam AA, Naikoo MW, Horo JP, Mallick J, Rihan M, ... & Rahman A (2023) Response of soil moisture and vegetation conditions in seasonal variation of land surface temperature and surface urban heat island intensity in sub-tropical semi-arid cities. Theoretical and Applied Climatology, 1–29 Shahfahad Talukdar S, Rihan M, Hang HT, Bhaskaran S & Rahman A (2021) Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities Environment, Development and Sustainability 1–29 Sieghardt M, Mursch-Radlgruber E, Paoletti E, Couenberg E, Dimitrakopoulus A, Rego F et al (2005) The abiotic urban environment: impact of urban growing conditions on urban vegetation. In: Konijnendijk C, Nilsson K, Randrup T, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 281–323 Su S, Xiao R, Jiang Z, Zhang Y (2012) Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr 34:295–305 The World Resources Institute (1996) The urban environment: world resources 1996–97. Oxford University Press, New York United Nations (2012) World urbanization prospects: the 2011 revision. United Nations, New York United Nations Department of Economic and Social Afairs (UNDESA) (2012) Nations Department of Economic and Social Affairs. World urbanization prospects: the 2011 revision. New York: United Nations Department of Economic and Social Afairs/Population Division Ward DS, Mahowald NM, Kloster S (2014) Potential climate forcing of land use and land cover change. Atmos Chem Phys 14(23):12701–12724 Weng Q (2001) A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in Zhujiang Delta China. Int J Remote Sens 22(10):1999–2014 Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483 Wolch JR, Byrne J, Newell JP (2014a) Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough.’ Landsc Urban Plan 125:234–244. https://doi.org/10.1016/j.landurbplan.2014.01.017 Wu Z, Chen R, Meadows ME, Sengupta D, Xu D (2019) Changing urban green spaces in Shanghai: trends, drivers and policy implications. Land Use Policy 87:104080 Wu J, Yang M, Xiong L, Wang C, Ta N (2021) Health-oriented vegetation community design: innovation in urban green space to support respiratory health. Landsc Urban Plan 205:103973 Xian G, Crane M, Steinward D (2005) Dynamic modeling of Tampa Bay urban development using parallel computing. Comput Geosci 31(7):920–928. https://doi.org/10.1016/j.cageo.2005.03.006 Xiao R, Weng Q, Ouyang Z, Li W, Schienke EW, Zhang Z (2008) Land surface temperature variation and major factors in Beijing China. Photogramm Eng Remote Sens 74(4):451–461. https://doi.org/10.14358/PERS.74.4.451 Xu LY, Xie XD, Li S (2013) Correlation analysis of the urban heat island efect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environ Pollut 178:102–114. https://doi.org/10.1016/j.envpol.2013.03.006 Yogesh K, Bharath BD, Mallick J, Atzberger C, Kerle N (2009) Satellite—based analysis of the role of land use: land cover and vegetation density on surface temperature regime of Delhi, India. J Ind Soc Remote Sens 37(2):201–214. https://doi.org/10.1007/s12524-009-0030-x You G, Zhang Y, Liu Y, Schaefer D, Gong H, Gao J, Lu Z, Song Q, Zhao J, Wu C, Yu L, Xie Y (2013) Investigation of temperature and aridity at different elevations of Mt. Ailao SW China. Int J Biometeorol 57(3):487–492 Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106(3):375–386 Yuan F, Sawaya KE, Leofelholz CB, Bauer ME (2005) Land cover classifcation and change analysis of the twin cities (Minnesota) metropolitan area by multi-temporal Landsat remote sensing. Remote Sens Environ 98:317–328. https://doi.org/10.1016/j.rse.2005.08.006 Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594 Zhang B, Xie GD, Gao JX, Yang Y (2014) The cooling efect of urban green spaces as a contribution to energy-saving and emission-reduction: a case study in Beijing China. Build Environ. https://doi.org/10.1016/j.buildenv.2014.03.00 Zhang F, Xu N, Wang C, Wu F, Chu X (2020) Effects of land use and land cover change on carbon sequestration and adaptive management in Shanghai, China. Phys Chem Earth, Parts a/b/c 120:102948 Zhou X, Wang YC (2011) Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc Urban Plan 100(3):268–277