Unrecognized Sources of Uncertainties (USU) in Experimental Nuclear Data
Tài liệu tham khảo
Aristotle (384–322 B.C.E), Nicomachean Ethics.
Friedrich Carl, Gauss (1777–1855): At the relatively young age of 32, Gauss published his method of calculating orbits of celestial bodies. In doing so, he used the method of least squares, claiming to have knowledge of this fundamental mathematics approach as early as 1795, when he would have just been 18 years old. However, credit for inventing this method was in dispute at the time, Adrien-Marie Legendre first published a version of the method in 1805, but Gauss pushed his definition to the extreme in a way that Legendre did not do.
Smith, 1991
Capote, 2010, Nuclear data eval uation methodology including estimates of covariances, EPJ Web Conf., 8, 10.1051/epjconf/20100804001
Smith, 2012, Experimental nuclear reaction data uncertainties: basic concepts and documenta tion, Nucl. Data Sheets, 113, 3006, 10.1016/j.nds.2012.11.004
Bauge, 2011
Smith, 1993
Hetrick, 1980
Kawano, 1997
Rising, 2013, Evaluation and uncertainty quantification of prompt fission neutron spectra of uranium and plutonium isotopes, Nucl. Sci. Eng., 175, 81, 10.13182/NSE12-34
Muir, 2007
Padé, 1892, Sur la représentation approchée d' une fonction par des fractions rationnelles, Ann. Sci. l' École Norm. Sup., Series 3, 9, 3, 10.24033/asens.378
1973, Padé approximants and their applications
Baker, 1975
Vinogradov, 1987
Badikov, 1992, Nuclear data processing, evaluation, transformation and storage with Padé-approximants, 182
Hermanne, 2018, Reference cross sections for charged-particle monitor reactions, Nucl. Data Sheets, 148, 338, 10.1016/j.nds.2018.02.009
Smith, 2007, A Unified Monte Carlo approach to fast neutron cross section data evaluation, 736
Capote, 2008, An investigation of the performance of the unified Monte Carlo method of neutron cross section data evaluation, Nucl. Data Sheets, 109, 2768, 10.1016/j.nds.2008.11.007
Bauge, 2011, Evaluation of the covariance matrix of Pu-239 neutronic cross sections in the continuum using a Backward-Forward Monte Carlo method, J. Kor. Phys. Soc., 59, 1218, 10.3938/jkps.59.1218
Capote, 2012, A new formulation of the Unified Monte Carlo approach (UMC-B) and cross-section evaluation for the dosimetry reaction 55Mn(n, γ)56Mn, J. ASTM Int., 9, 10.1520/JAI104115
Koning, 2015, Bayesian Monte Carlo method for nuclear data evaluation, Eur. Phys. J. A, 51, 184, 10.1140/epja/i2015-15184-x
Goriely, 2014, Uncertainties of mass extrapolations in Hartree-Fock-Bogoliubov mass models, Phys. Rev. C, 89, 10.1103/PhysRevC.89.054318
Koning, 2019, TENDL: Complete nuclear data library for innovative nuclear science and technology, Nucl. Data Sheets, 155, 1, 10.1016/j.nds.2019.01.002
G.E. Moore, Cramming more components onto integrated circuits, Electronics 1965-04-19.
Poenitz, 1981, Evaluation methods for neutron cross section standards, 249
Poenitz, 1997
Dunford, 1992, Evaluated nuclear data file, ENDF/B-VI, 788
Carlson, 1993
V.G. Pronyaev, IAEA, Private Communication, 2003. See also Ref. [33].
Chiba, 1991
Badikov, 2007
Carlson, 2009, International evaluation of neutron cross section standards, Nucl. Data Sheets, 110, 3215, 10.1016/j.nds.2009.11.001
Carlson, 2018, Evaluation of neutron data standards, Nucl. Data Sheets, 148, 142, 10.1016/j.nds.2018.02.002
Brown, 2018, ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with cielo-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets, 148, 1, 10.1016/j.nds.2018.02.001
Otuka, 2014, Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC), Nucl. Data Sheets, 120, 272, 10.1016/j.nds.2014.07.065
Evaluated Nuclear Structure Data File (ENSDF), Available online at www.nndc.bnl.gov/ensdf/ Developed and maintained by the international network of Nuclear Structure and Decay Data evaluators (NSDD), see www-nds.iaea.org/nsdd/.
LiveChart of Nuclides, IAEA, Vienna. Decay data retrieval code available online at www-nds.iaea.org/medical/monitor_reactions.html.
NuDat, Brookhaven National Laboratory, USA. Decay data retrieval code available online at www.nndc.bnl.gov/nudat2/.
Neudecker, 2018, Template for estimating uncertainties of measured neutron-induced fission cross-sections, EPJ Nucl. Sci. Tech., 4, 21, 10.1051/epjn/2018026
Schillebeeckx, 2012, Determination of resonance parameters and their covariances from neutron induced reaction cross section data, Nucl. Data Sheets, 113, 3054, 10.1016/j.nds.2012.11.005
Helgesson, 2015
Neudecker, 2020, Applying a Template of Expected Uncertainties to Updating 239Pu(n, f) Cross-section Covariances in the Neutron Data Standards Database, Nucl. Data Sheets, 163, 228, 10.1016/j.nds.2019.12.005
Helgesson, 2017, Uncertainty-driven nuclear data evaluation including thermal (n, α) applied to 59Ni, Nucl. Data Sheets, 145, 1, 10.1016/j.nds.2017.09.001
Staples, 1995, Prompt fission neutron energy spectra induced by fast neutrons, Nucl. Phys. A, 591, 41, 10.1016/0375-9474(95)00119-L
Neudecker, 2014
Gai, 2007, Some algorithms for evaluating nuclear data and generating uncertainty covariance matrices, Vopr. Atom. Nauki Tekh., Ser. Yad. Konst., 1–2, 56
Gai, 2007, On the problem of ambiguity of the evaluated nuclear data uncertainties, Vopr. Atom. Nauki Tekh., Ser. Yad. Konst., 1–2, 45
Badikov, 2003, 117
Pronyaev, 2003, 172
2008, Nucl. Data Sheets, 109, 2725, 10.1016/j.nds.2008.11.001
2012, EPJ Web Conf., 27
2015, Nucl. Data Sheets, 123, 1, 10.1016/j.nds.2014.12.002
2018, EPJ Nucl. Sci. Tech., 4
Neudecker, 2018
Neudecker, 2013, Impact of model defect and experimental uncertainties on evaluated output, Nucl. Instr. Meth. Phys. Res. A, 723, 163, 10.1016/j.nima.2013.05.005
Gai, 2008, Uncertainties and covariances of the fission cross sections and the fission neutron multiplicities for actinides, Nucl. Data Sheets, 109, 2890, 10.1016/j.nds.2008.11.029
Blokhin, 2016, New version of neutron evaluated data library BROND-3, Vopr. Atom. Nauki Tech., Ser. Nucl. Const., 2, 62
Capote, 2019, How accurately we know the standard 252Cf(sf) neutron multiplicity?
2008, Evaluation of measurement data: Guide to the expression of uncertainty in measurement
Pronyaev, 2017, New fit of thermal neutron constants (TNC) for 233,235U, 239,241Pu and 252Cf(sf): Microscopic vs. Maxwellian data, EPJ Web Conf., 146, 10.1051/epjconf/201714602045
Divadeenam, 1984, A least-squares evaluation of thermal data for fissile nuclei, Ann. Nucl. Energy, 11, 375, 10.1016/0306-4549(84)90002-1
Axton, 1986
Vaughan, 2014
Razor
Otuka, 2017, Experiments in the EXFOR library for evaluation of thermal neutron constants, EPJ Web Conf., 146, 10.1051/epjconf/201714607005
Croft, 2019, A Review of the prompt neutron nu-bar value for 252Cf spontaneous fission, Nucl. Instr. Meth. Phys. Res. A, 723
Borella, 2007, The use of C6D 6 detectors for neutron induced capture cross-section measurements in the resonance region, Nucl. Instr. Meth. A, 577, 626, 10.1016/j.nima.2007.03.034
Schillebeeckx, 2012, Determination of resonance parameters and their covariances from neutron induced reaction cross section data, Nucl. Data Sheets, 113, 3054, 10.1016/j.nds.2012.11.005
Massimi, 2014, Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA, EPJ, 50, 124, 10.1140/epja/i2014-14124-8
P. Schillebeeckx, S. Kopecky, C. Paradela, Evaluation of measurement uncertainties and covariances, JRC Technical Report, Geel, to be published.
Bennett, 1954
Willink, 2002, Statistical determination of a comparison reference value using hidden errors, Metrol., 39, 343, 10.1088/0026-1394/39/4/3
Agostini, 1994, On the use of the covariance matrix to fit correlated data, Nucl. Instr. Meth. Phys. Res. A, 346, 306, 10.1016/0168-9002(94)90719-6
Fröhner, 2003, Evaluation of data with systematic errors, Nucl. Sci. Eng., 145, 342, 10.13182/NSE03-A2387
Tovesson, 2014, Fast neutron-induced fission cross sections of 233,234,236,238U up to 200 MeV, Nucl. Sci. Eng., 178, 57, 10.13182/NSE13-56
Paradela, 2015, High-accuracy determination of the 238U/235Ufission cross section ratio up to ≈ 1 GeV at n_TOF at CERN, Phys. Rev. C, 91, 10.1103/PhysRevC.91.024602
Behrens, 1977, Measurements of the neutron-induced fission cross sections of 234U, 236U, and 238U relative to 235U from 0.1 to 30 MeV, Nucl. Sci. Eng., 63, 250, 10.13182/NSE77-2
Difilippo, 1978, Measurement of the Uranium-238 to Uranium-235 fission cross section ratio between 0.1 and 25 MeV, Nucl. Sci. Eng., 68, 43, 10.13182/NSE78-A27269
Cierjacks, 1976, Measurements of neutron induced fission cross section ratios at the Karlsruhe isochronous cyclotron
Coates, 1975, A measurement of the U-238/U-235 fission cross-section ratio, vol. 2, 568
Shcherbakov, 2002, Neutron-induced fission of 233U, 238U, 232Th, 239Pu, 237Np, natPb and 209Bi relative to 235U in the energy range 1–200 MeV, J. Nucl. Sci. Tech. (Japan) Supp., 2, 230, 10.1080/00223131.2002.10875081
Lisowski, 1991, Fission cross sections ratios for 233U, 234U, and 236U relative to 235U from 0.5 to 400 MeV, 732
Schnabel, 2017, Fitting and analysis technique for inconsistent nuclear data
2016
Chadwick, 2018, CIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen, Nucl. Data Sheets, 148, 189, 10.1016/j.nds.2018.02.003
Capote, 2018, IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets, Nucl. Data Sheets, 148, 254, 10.1016/j.nds.2018.02.005
JEFF Scientific Working Group, 2014
Chadwick, 2011, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, 112, 2887, 10.1016/j.nds.2011.11.002
Mihalczo, 2002, Delayed critical ORNL unreflected uranium (93.2) metal sphere and the pure unreflected uranium (93.80) sphere, Nucl. En., 29, 552
Poenitz, 1970, Interpretation and intercomparison of standard cross sections, 338
Giorginis, 2006, The cross section of the 10B(n, α)7Li reaction measured in the MeV energy range, Nucl. Instr. Meth. A, 562, 737, 10.1016/j.nima.2006.02.035
Zhang, 2002, Differential cross section measurement for the 10B(n, α)7Li reaction, Nucl. Sci. Eng., 142, 203, 10.13182/NSE02-A2300
Guo-Hui, 2011, Measurement of cross sections for the 10B(n, α)7Li reaction at 4.0 and 5.0 MeV using an asymmetrical twin gridded ionization chamber, Chin. Phys. Lett., 28
Stavisskii, 1961, Radiative neutron cross-section for several isotopes in the energy range 0.03–2.5 MeV, Atomn. En., 10, 508
Tolstikov, 1963, A measurement of the capture cross sections of 238U and 232Th for 5–200 keV neutrons, Atomn. En., 15, 1170
Sirakov, 2008, An ENDF-6 compatible evaluation for neutron induced reactions of 232Th in the unresolved resonance region, Ann. Nucl. En., 35, 1223, 10.1016/j.anucene.2007.12.008
Capote, 2010
Wisshak, 2001, Neutron capture cross section of Th-232, Nucl. Sci. Eng., 137, 183, 10.13182/NSE01-A2184
Borella, 2006, 232Th(n, γ) cross section from 4 keV to 140 keV, Nucl. Sci. Eng., 152, 1, 10.13182/NSE06-A2557
Aerts, 2006, Neutron capture cross section of Th-232 measured at the n_TOF facility at CERN in the unresolved resonance region up to 1 MeV, Phys. Rev. C, 73, 10.1103/PhysRevC.73.054610
Pavetich, 2019, AMS measurements of the reaction 35Cl(n, γ)36Cl, Phys. Rev. C, 99
Dillmann, 2009, Determination of the stellar (n, γ) cross section of 40Ca with accelerator mass spectrometry, Phys. Rev. C, 79, 10.1103/PhysRevC.79.065805
Wallner, 2017, Precise measurement of the thermal and stellar 54Fe(n, γ)55Fe cross sections via AMS, Phys. Rev. C, 96, 10.1103/PhysRevC.96.025808
Ludwig, 2017, Measurement of the stellar 58Ni(n, γ)59Ni cross section with accelerator mass spectrometry, Phys. Rev. C, 95, 10.1103/PhysRevC.95.035803
Guber, 2002, New Maxwellian averaged neutron capture cross-sections for Cl-35 and 37, Phys. Rev. C, 65, 10.1103/PhysRevC.65.058801
de L. Musgrove, 1976, Resonant neutron capture in 40Ca, Nucl. Phys. A, 259, 365, 10.1016/0375-9474(76)90072-5
de L. Musgrove, 1977, Odd-even effects in radiative neutron capture by 42Ca, 43Ca and 44Ca, Nucl. Phys. A, 279, 317, 10.1016/0375-9474(77)90231-7
Giubrone, 2014
Guber, 2010, Astrophysical reaction rates for Ni-58, Ni-60 (n, gamma) from new neutron capture cross section measurements, Phys. Rev. C, 82, 10.1103/PhysRevC.82.057601
Zugec, 2014, Experimental neutron capture data of 58Ni from the CERN n_TOF facility, Phys. Rev. C, 89, 10.1103/PhysRevC.89.014605
Boldeman, 1977, Review of ν‾ for 252Cf and Thermal Neutron Fission, 182
Axton, 1977, Accuracies and correction in the neutron bath techniques, 237
Aleksandrov, 1980, Absolute measurements of NU(Cf-252) by means of manganese bath method, All Union Conf. on Neutron Phys., 4, 119
Asplund-Nilsson, 1963, An absolute measurement of nu-bar of Cf-252, Nucl. Sci., Eng.16, 124, 10.13182/NSE63-A26483
Axton, 1985, Neutron yield from the spontaneous fission of Cf-252(nu), Metrol., 21, 59, 10.1088/0026-1394/21/2/003
Bozorgmanesh, 1977, Absolute measurement of the number of neutrons per spontaneous fission of 252Cf(sf), Trans. Amer. Nucl. Soc., 27, 864
DeVolpi, 1970, Neutron yield of 252Cf(sf) based on absolute measurement of the neutron rate and fission rate, Phys. Rev. C, 1, 683, 10.1103/PhysRevC.1.683
Colvin, 1965, Boron pile nu-bar measurements, IAEA Phys. Chem. Fission Conf., 2, 25
Diven, 1961, Numbers of prompt neutrons per fission for U233, U235, Pu239 and Cf252, Reactor Physics Sem., 1, 149
Edwards, 1982, Measurements of prompt nu-Bar and variance for the spontaneous fission of Cf-252 and Pu-242, Ann. Nucl. En., 9, 127, 10.1016/0306-4549(82)90012-3
Hopkins, 1963, Prompt neutrons from fission, Nucl. Phys., 48, 433, 10.1016/0029-5582(63)90182-2
Smith, 1984, Absolute measurement of nu-bar for Cf-252, Electric Power Res. Inst., Nucl. Phys. Ser., 1, 3436
Spencer, 1982, A Measurement of the Average Number of Prompt Neutrons from Spontaneous Fission of Californium-252, Nucl. Sci. Eng., 80, 603, 10.13182/NSE82-A18973
White, 1968, Measurement of the number of neutrons per fission for Cf-252, J. Nucl. En., 22, 73, 10.1016/0022-3107(68)90056-7
Huan-Qiao, 1979, The measurement of the average number of prompt neutrons and the distribution of prompt neutron numbers for Cf-252 spontaneous fission, Chin. J. Nucl. Phys., 1, 9
Cox, 2006, The generalized weighted mean of correlated quantities, Metrol., 43, S268, 10.1088/0026-1394/43/4/S14
R. Peelle, Evaluating nuclear data uncertainty: progress, pitfalls, and prospects, 1988, pp. 68–71, Ref. [128].
1988, Proc. IAEA Specialists' Meet. on Covariance Methods and Practices in the Field of Nuclear Data
Neudecker, 2012, Peelle's pertinent puzzle: A fake due to improper analysis, Nucl. Sci. Eng., 170, 54, 10.13182/NSE11-20
Tanabashi, 2018, Review of Particle Physics, Phys. Rev. D, 98, 10.1103/PhysRevD.98.030001
Badikov, 2012, Procedure for statistical analysis of one-parameter discrepant experimental data, Appl. Rad. Isot., 70, 1850, 10.1016/j.apradiso.2012.02.028
Zhang, 2006, Uncertainty associated with the weighted mean of measurement data, Metrol., 43, 195, 10.1088/0026-1394/43/3/002
Kossert, 2004, LSC measurements of the half-life of 40K, Appl. Rad. Isot., 60, 459, 10.1016/j.apradiso.2003.11.059
Rukhin, 2009, Weighted means statistics in interlaboratory studies, Metrol., 46, 323, 10.1088/0026-1394/46/3/021
Zimmerman, 2012, Results of an international comparison for the activity measurement of 177Lu, Appl. Rad. Isot., 70, 1825, 10.1016/j.apradiso.2012.02.014
Ratel, 2015, Uncertainty of combined activity estimations, Metrol., 52, S30, 10.1088/0026-1394/52/3/S30
Lépy, 2015, Uncertainties in gamma-ray spectrometry, Metrol., 52, S123, 10.1088/0026-1394/52/3/S123
James, 1992, The use of the normalized residual in averaging experimental data and in treating outliers, Nucl. Instr. Meth. Phys. Res. A, 313, 277, 10.1016/0168-9002(92)90106-E
Steele, 2005, Outlier rejection for the weighted-mean KCRV, Metrol., 42, 32, 10.1088/0026-1394/42/1/004
Ellison, 2018, An outlier-resistant indicator of anomalies among inter-laboratory comparison data with associated uncertainty, Metrol., 55, 840, 10.1088/1681-7575/aae610