Unravelling the ZnO-NPs mechanistic pathway: Cellular changes and altered morphology in the gastrointestinal tract of the earthworm Eisenia andrei

Ecotoxicology and Environmental Safety - Tập 196 - Trang 110532 - 2020
Zuzanna M. Świątek1, Olga Woźnicka2, Agnieszka J. Bednarska3
1Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
2Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
3Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland

Tài liệu tham khảo

Adam, 2017, European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling, Environ. Sci. Nano, 4, 1961, 10.1039/C7EN00487G Ajdary, 2018, Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity, Nanomaterials, 8, 634, 10.3390/nano8090634 Amaral, 2005, Metal accumulation and apoptosis in the alimentary canal of Lumbricus terrestris as a metal biomarker, Biometals, 18, 199, 10.1007/s10534-005-0335-3 Amorim, 2015, Effect assessment of engineered nanoparticles in solid media – current insight and the way forward, Environ. Pollut., 218, 1370, 10.1016/j.envpol.2015.08.048 Andre, 2009, Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses, Environ. Sci. Technol., 43, 6822, 10.1021/es900275e Arnaud, 2000, Influences of different standardised test methods on biochemical responses in the earthworm Eisenia fetida andrei, Soil Biol. Biochem., 32, 67, 10.1016/S0038-0717(99)00130-3 Babczynska, 2011, Metallothioneins and energy budget indices in cadmium and copper exposed spiders Agelena labyrinthica in relation to their developmental stage, gender and origin, Comp. Biochem. Physiol. Toxicol. Pharmacol., 154, 161, 10.1016/j.cbpc.2011.05.001 Bacchetta, 2014, Evidence and uptake routes for zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis, Nanotoxicology, 8, 728 Berg, 2002 Buerki-Thurnherr, 2013, In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity, Nanotoxicology, 7, 402, 10.3109/17435390.2012.666575 Calisi, 2016, Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity, Ecotoxicology, 25, 677, 10.1007/s10646-016-1626-x Cancio, 1995, The effect of sublethal lead exposure on the ultrastructure and on the distribution of acid phosphatase activity in chloragocytes of earthworms (Annelida, Oligochaeta), Histochem. J., 27, 965, 10.1007/BF00175571 Data, 2019 Degryse, 2009, Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review, Eur. J. Soil Sci., 60, 590, 10.1111/j.1365-2389.2009.01142.x D’Herde, 2009, Apoptotic, autophagic and necrotic cell death types in pathophysiological conditions: morphological and histological aspects, 33 Dziewięcka, 2018, Reduced fecundity and cellular changes in Acheta domesticus after multigenerational exposure to graphene oxide nanoparticles in food, Sci. Total Environ., 635, 947, 10.1016/j.scitotenv.2018.04.207 Fröhlich, 2016, Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota, Int. J. Mol. Sci., 17, 509, 10.3390/ijms17040509 García-Gómez, 2015, Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil, Environ. Sci. Pollut. Res., 22, 16803, 10.1007/s11356-015-4867-y Goswami, 2017, Engineered nano particles: nature, behavior, and effect on the environment, J. Environ. Manag., 196, 297, 10.1016/j.jenvman.2017.01.011 Heggelund, 2014, Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida, Nanotoxicology, 8, 559, 10.3109/17435390.2013.809808 Hong, 2013, A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity, J. Mater. Chem. B, 1, 2985, 10.1039/c3tb20251h Hopkin, 1989 Hu, 2012, Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase, Toxicol. Environ. Chem., 94, 732, 10.1080/02772248.2012.668020 Kamat, 1956, The structure of the Golgi elements and mitochondria in earthworms and lamellibranchs, Proc. Indian Acad. Sci. B, 44, 91, 10.1007/BF03050983 Karpeta-Kaczmarek, 2016, Ultrastructure of the gut epithelium in Acheta domesticus after long-term exposure to nanodiamonds supplied with food, Arthropod Struct. Dev., 45, 253, 10.1016/j.asd.2016.02.002 Kaya, 2016, A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters, Chemosphere, 144, 571, 10.1016/j.chemosphere.2015.09.024 Kwak, 2015, Ecotoxicological effects of nanomaterials on earthworms: a review, Hum. Ecol. Risk Assess., 21, 1566, 10.1080/10807039.2014.960302 Loureiro, 2018, Nanomaterials as soil pollutants, 161 Lourenço, 2011, Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides, Chemosphere, 85, 1630, 10.1016/j.chemosphere.2011.08.027 Morgan, 1999, Cellular and molecular aspects of metal sequestration and toxicity in earthworms, Invertebr. Reprod. Dev., 36, 17, 10.1080/07924259.1999.9652673 Morgan, 2002, Morphological plasticity in metal-sequestering earthworm chloragocytes: morphometric electron microscopy provides a biomarker of exposure in field populations, Environ. Toxicol. Chem., 21, 610 Napolitano, 2005, Quantitating adenylate nucleotides in diverse organisms, J. Biochem. Biophys. Methods, 63, 69, 10.1016/j.jbbm.2005.03.001 Prento, 1979, Metals and phosphate in the chloragosomes of Lumbricus terrestris and their possible physiological significance, Cell Tissue Res., 196, 123, 10.1007/BF00236353 Prentø, 1987, Distribution of 20 enzymes in the midgut region of the earthworm, Lumbricus terrestris L., with particular emphasis on the physiological role of the chloragog tissue, Comp. Biochem. Physiol. A Physiol., 87, 135, 10.1016/0300-9629(87)90436-1 Rajput, 2018, Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review, Environ. Nanotechnol. Monit. Manag., 9, 76 Rocha, 2016, Histopathological assessment and inflammatory response in the digestive gland of marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots, Aquat. Toxicol., 177, 306, 10.1016/j.aquatox.2016.06.003 Romero-Freire, 2017, Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei, Environ. Toxicol. Chem., 36, 137, 10.1002/etc.3512 Savić-Zdravković, 2018, An environmentally relevant concentration of titanium dioxide (TiO2) nanoparticles induces morphological changes in the mouthparts of Chironomus tentans, Chemosphere, 211, 489, 10.1016/j.chemosphere.2018.07.139 Speir, 1999, Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts?, Soil Biol. Biochem., 31, 1953, 10.1016/S0038-0717(99)00115-7 Spurgeon, 1996, Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida, Pedobiologia, 40, 80 Spurgeon, 2003, A summary of eleven years progress in earthworm ecotoxicology, Pedobiologia, 47, 588 Stafilov, 2010, Heavy metal contamination of topsoils around a lead and zinc smelter in the republic of Macedonia, J. Hazard Mater., 175, 896, 10.1016/j.jhazmat.2009.10.094 Stefanowicz, 2008, Metals affect soil bacterial and fungal functional diversity differently, Environ. Toxicol. Chem., 27, 591, 10.1897/07-288.1 Sun, 2014, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 185, 69, 10.1016/j.envpol.2013.10.004 Świątek, 2019, Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form, Environ. Sci. Pollut. Res., 26, 24933, 10.1007/s11356-019-05753-3 Świątek, 2017, Toxicokinetics of zinc-oxide nanoparticles and zinc ions in the earthworm Eisenia andrei, Ecotoxicol. Environ. Saf., 143, 151, 10.1016/j.ecoenv.2017.05.027 Unfried, 2007, Cellular responses to nanoparticles: target structures and mechanisms, Nanotoxicology, 1, 52, 10.1080/00222930701314932 Waalewijn-Kool, 2013, The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil, Environ. Toxicol. Chem., 32, 2349, 10.1002/etc.2302 Wilczek, 2018, Effects of food contaminated with cadmium and copper on hemocytes of Steatoda grossa (Araneae: Theridiidae), Ecotoxicol. Environ. Saf., 149, 267, 10.1016/j.ecoenv.2017.12.007 Xia, 2008, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2, 2121, 10.1021/nn800511k Yu, 2013, Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation, Toxicol. Vitro, 27, 1187, 10.1016/j.tiv.2013.02.010