Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study

Nano Research - Tập 10 Số 5 - Trang 1673-1696 - 2017
Wee‐Jun Ong1, Lutfi Kurnianditia Putri2, Yoong-Chuen Tan2, Lling‐Lling Tan3, Neng Li4, Yun Hau Ng5, Xiaoming Wen6, Siang‐Piao Chai2
1Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A⁎STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
2Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
3Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Jalan Venna P5/2, Precinct 5, 62200, Putrajaya, Malaysia
4State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
5Particles and Catalysis Research Group (PARTCAT), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
6Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Forkel, M.; Carvalhais, N.; Rödenbeck, C.; Keeling, R.; Heimann, M.; Thonicke, K.; Zaehle, S.; Reichstein, M. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 2016, 351, 696–699.

Seneviratne, S. I.; Donat, M. G.; Pitman, A. J.; Knutti, R.; Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016, 529, 477–483.

Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737.

Trend watch. Nature 2016, 531, 281.

Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.

Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem., Int. Ed. 2016, 55, 8840–8845.

Yang, M.-Q.; Zhang, N.; Pagliaro, M.; Xu, Y.-J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 2014, 43, 8240–8254.

Yang, M.-Q.; Xu, Y.-J. Photocatalytic conversion of CO2 over graphene-based composites: Current status and future perspective. Nanoscale Horiz. 2016, 1, 185–200.

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2- based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719.

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A.-R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J.-P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B 2015, 179, 160–170.

Kong, X. Y.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 2016, 8, 3074–3081.

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.

Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y. H.; Amal, R.; Kudo, A. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 2016, 138, 10260–10264.

Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

Ong, W.-J.; Gui, M. M.; Chai, S.-P.; Mohamed, A. R. Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv. 2013, 3, 4505–4509.

Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

Pan, Y.-X.; Sun, Z.-Q.; Cong, H.-P.; Men, Y.-L.; Xin, S.; Song, J.; Yu, S.-H. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 2016, 9, 1689–1700.

Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. Photocatalytic reduction of CO2 with H2O over graphene oxidesupported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chem. Eng. J. 2017, 308, 248–255.

Zhang, N.; Yang, M.-Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y.-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 10307–10377.

Hou, J. G.; Cao, S. Y.; Wu, Y. Z.; Liang, F.; Ye, L.; Lin, Z. S.; Sun, L. C. Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy 2016, 30, 59–68.

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 2014, 6, 1946–2008.

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.

Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

Pan, Z. M.; Zheng, Y.; Guo, F. S.; Niu, P. P.; Wang, X. C. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem, in press, DOI: 10.1002/cssc.201600850.

Zheng, D. D.; Cao, X.-N.; Wang, X. C. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew. Chem., Int. Ed. 2016, 55, 11512–11516.

Zhang, G. G.; Lan, Z.-A.; Lin, L. H.; Lin, S.; Wang, X. C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066.

Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

Li, Y. X.; Ouyang, S. X.; Xu, H.; Wang, X.; Bi, Y. P.; Zhang, Y. F.; Ye, J. H. Constructing solid-gas-interfacial Fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J. Am. Chem. Soc. 2016, 138, 13289–13297.

Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 2015, 44, 1249–1257.

Ong, W.-J.; Putri, L. K.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal. B 2016, 180, 530–543.

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 51, 858–861.

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.

Zhang, H.; Zhao, L. X.; Geng, F. L.; Guo, L.-H.; Wan, B.; Yang, Y. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal. B 2016, 180, 656–662.

Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B 2016, 185, 225–232.

Jian, X.; Liu, X.; Yang, H.-M.; Li, J.-G.; Song, X.-L.; Dai, H.-Y.; Liang, Z.-H. Construction of carbon quantum dots/ proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application. Appl. Surf. Sci. 2016, 370, 514–521.

Guo, Y.; Yao, P. J.; Zhu, D. Q.; Gu, C. A novel method for the development of a carbon quantum dot/carbon nitride hybrid photocatalyst that responds to infrared light irradiation. J. Mater. Chem. A 2015, 3, 13189–13192.

Xia, X. Y.; Deng, N.; Cui, G. W.; Xie, J. F.; Shi, X. F.; Zhao, Y. Q.; Wang, Q.; Wang, W.; Tang, B. NIR light induced H2 evolution by a metal-free photocatalyst. Chem. Commun. 2015, 51, 10899–10902.

Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.

Atkin, P.; Daeneke, T.; Wang, Y.; Carey, B. J.; Berean, K. J.; Clark, R. M.; Ou, J. Z.; Trinchi, A.; Cole, I. S.; Kalantar-Zadeh, K. 2D WS2/carbon dot hybrids with enhanced photocatalytic activity. J. Mater. Chem. A 2016, 4, 13563–13571.

Miao, R.; Luo, Z.; Zhong, W.; Chen, S.-Y.; Jiang, T.; Dutta, B.; Nasr, Y.; Zhang, Y. S.; Suib, S. L. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl. Catal. B 2016, 189, 26–38.

Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p–n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

Tian, J.; Leng, Y. H.; Zhao, Z. H.; Xia, Y.; Sang, Y. H.; Hao, P.; Zhan, J.; Li, M. C.; Liu, H. under UV,visible, and near-infrared irradiation. Nano Energy 2015, 11, 419–427.

Di, J.; Xia, J. X.; Ji, M. X.; Xu, L.; Yin, S.; Zhang, Q.; Chen, Z. G.; Li, H. M. Carbon quantum dots in situ coupling to bismuth oxyiodide via reactable ionic liquid with enhanced photocatalytic molecular oxygen activation performance. Carbon 2016, 98, 613–623.

Yang, P. J.; Zhao, J. H.; Wang, J.; Cui, H. J.; Li, L.; Zhu, Z. P. Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv. 2015, 5, 21332–21335.

Ding, H.; Wei, J.-S.; Xiong, H.-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 2014, 6, 13817–13823.

Ma, Y. J.; Li, X. L.; Yang, Z.; Xu, S. S.; Zhang, W.; Su, Y. J.; Hu, N. T.; Lu, W. J.; Feng, J.; Zhang, Y. F. Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir 2016, 32, 9418–9427.

She, X. J.; Wu, J. J.; Zhong, J.; Xu, H.; Yang, Y. C.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D. L.; Li, H. M. et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 2016, 27, 138–146.

Putri, L. K.; Ong, W.-J.; Chang, W. S.; Chai, S.-P. Enhancement in the photocatalytic activity of carbon nitride through hybridization with light-sensitive AgCl for carbon dioxide reduction to methane. Catal. Sci. Technol. 2016, 6, 744–754.

Wang, Y. G.; Bai, X.; Qin, H. F.; Wang, F.; Li, Y. G.; Li, X.; Kang, S. F.; Zuo, Y. H.; Cui, L. F. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion. ACS Appl. Mater. Interfaces 2016, 8, 17212–17219.

Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogendoped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

Shi, L.; Chang, K.; Zhang, H. B.; Hai, X.; Yang, L. Q.; Wang, T.; Ye, J. H. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 2016, 12, 4431–4439.

Liu, Q.; Chen, T. X.; Guo, Y. R.; Zhang, Z. G.; Fang, X. M. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B 2016, 193, 248–258.

Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201601273.

Li, H. Q.; Liu, Y. X.; Cui, Y. M.; Zhang, W. B.; Fu, C.; Wang, X. C. Facile synthesis and enhanced visible-light photoactivity of DyVO4/g-C3N4I composite semiconductors. Appl. Catal. B 2016, 183, 426–432.

Wang, J.-C.; Yao, H.-C.; Fan, Z.-Y.; Zhang, L.; Wang, J.-S.; Zang, S.-Q.; Li, Z.-J. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 3765–3775.

Wang, J.-C.; Zhang, L.; Fang, W.-X.; Ren, J.; Li, Y.-Y.; Yao, H.-C.; Wang, J.-S.; Li, Z.-J. Enhanced photoreduction CO2 activity over direct Z-scheme a-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 8631–8639.

Fernando, K. A. S.; Sahu, S.; Liu, Y. M.; Lewis, W. K.; Guliants, E. A.; Jafariyan, A.; Wang, P.; Bunker, C. E.; Sun, Y.-P. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 2015, 7, 8363–8376.

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

Zhang, Z. J.; Zheng, T. T.; Li, X. M.; Xu, J. Y.; Zeng, H. B. Progress of carbon quantum dots in photocatalysis applications. Part. Part. Syst. Charact. 2016, 33, 457–472.

Ong, W.-J.; Voon, S.-Y.; Tan, L.-L.; Goh, B. T.; Yong, S.-T.; Chai, S.-P. Enhanced daylight-induced photocatalytic activity of solvent exfoliated graphene (SEG)/ZnO hybrid nanocomposites toward degradation of reactive black 5. Ind. Eng. Chem. Res. 2014, 53, 17333–17344.

Ong, W.-J.; Yeong, J.-J.; Tan, L.-L.; Goh, B. T.; Yong, S.-T.; Chai, S.-P. Synergistic effect of graphene as a co-catalyst for enhanced daylight-induced photocatalytic activity of Zn0.5Cd0.5S synthesized via an improved one-pot co-precipitationhydrothermal strategy. RSC Adv. 2014, 4, 59676–59685.

Zou, J.-P.; Wu, D.-D.; Luo, J. M.; Xing, Q.-J.; Luo, X.-B.; Dong, W.-H.; Luo, S.-L.; Du, H.-M.; Suib, S. L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MBwith photoreduction of CO2. ACS Catal. 2016, 6, 6861–6867.

Bhandary, N.; Singh, A. P.; Kumar, S.; Ingole, P. P.; Thakur, G. S.; Ganguli, A. K.; Basu, S. In situ solid-state synthesis of a AgNi/g-C3N4 nanocomposite for enhanced photoelectrochemical and photocatalytic activity. ChemSusChem 2016, 9, 2816–2823.

An, X. Q.; Li, K. F.; Tang, J. W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 2014, 7, 1086–1093.

Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 23133–23142.

Zhang, Z. Y.; Huang, Y. Z.; Liu, K. C.; Guo, L. J.; Yuan, Q.; Dong, B. Multichannel-improved charge-carrier dynamics in well-designed hetero-nanostructural plasmonic photocatalysts toward highly efficient solar-to-fuels conversion. Adv. Mater. 2015, 27, 5906–5914.

Sun, M. Y.; Qu, S. N.; Ji, W. Y.; Jing, P. T.; Li, D.; Qin, L.; Cao, J. S.; Zhang, H.; Zhao, J. L.; Shen, D. Z. Towards efficient photoinduced charge separation in carbon nanodots and TiO2 composites in the visible region. Phys. Chem. Chem. Phys. 2015, 17, 7966–7971.

Ma, Z. J.; Sa, R. J.; Li, Q. H.; Wu, K. C. Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: Insights into high efficiency for photocatalytic solar water splitting. Phys. Chem. Chem. Phys. 2016, 18, 1050–1058.