Unraveling Precise Locations of Indium Atoms in g‐C3N4 for Ameliorating Hydrogen Peroxide Piezo‐Photogeneration

Solar RRL - Tập 8 Số 8 - 2024
Nguyen Hoai Anh1,2, Duc‐Viet Nguyen3, Tuyen Anh Luu4, Pham Duc Minh Phan1,2, Huynh Phuoc Toan1,2, Pho Phuong Ly1,2, Hung Minh Nguyen5, Ngoc Linh Nguyen6,7, Seung Hyun Hur3, Phạm Thị Huế4, Nguyen Thi Ngoc Hue4, Minh‐Thuan Pham8, Thuy Dieu Thi Ung9, Danh Bich10, Vinh Ai Dao11, Huan V. Doan12, Mark A. Isaacs13,14,15, Minh Chien Nguyen16, Woo Jong Yu16, Yen‐Yi Lee8, Guo‐Ping Chang‐Chien8, Hoai‐Thanh Vuong17
1Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000 Vietnam
2Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward Thu Duc City Ho Chi Minh City 700000 Vietnam
3School of Chemical Engineering, University of Ulsan, Ulsan, 44610 South Korea
4Center for Nuclear Technologies, Vietnam Atomic Energy Institute, Ho Chi Minh City 700000, Vietnam
5Insitute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City 700000 Vietnam
6Faculty of Materials Science and Engineering Phenikaa University Ha Noi 12116 Vietnam
7Phenikaa Research and Technology Institute (PRATI) A&A Green Phoenix Group JSC 167 Hoang Ngan Trung Hoa Cau Giay Ha Noi 11313 Vietnam
8Center for Environmental Toxin and Emerging-contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
9Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, 100000 Vietnam
10Department of Physics Hanoi National University of Education 136 Xuan Thuy Ha Noi 100000 Vietnam
11Department of Physics Faculty of Applied Sciences Ho Chi Minh City University of Technology and Education Ho Chi Minh City 700000 Vietnam
12Research School of Chemistry, Australian National University, Canberra, 2601, Australia
13Department of Chemistry University College London Euston London WC1H 0AJ UK
14Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
15HarwellXPS Research Complex at Harwell Rutherford Appleton Laboratories Didcot OX11 0FA UK
16Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
17Department of Chemistry and Biochemistry University of California Santa Barbara (UCSB) Santa Barbara California 93106 USA

Tóm tắt

Increasing active sites in catalysts is of utmost importance for catalytic processes. In this regime, single‐atom dispersing on graphitic carbon nitrides (g‐C3N4) to produce fine chemicals, such as hydrogen peroxide (H2O2), is of current interest due to not only enhancing catalytic performance but also reducing the loading of necessary metals. Herein, g‐C3N4 is engineered by atomically dispersing aluminum (Al) or indium (In) sites to provide catalytic active centers via one‐step thermal shock polymerization. The addition of Al and In sites can accelerate the catalytic efficacy owing to the Lewis acid–base interactions between these metals and oxygen (O2). Under catalytic conditions, the formation of oxygenic radicals will strongly be associated with the enhanced formation of H2O2, confirmed by in situ electron paramagnetic resonance spectroscopy. Furthermore, the empirical analyses from positron annihilation spectroscopy show that In atoms will occupy the near positions of carbon vacancies (VC) to form NVC@InO bonds. This replacement will produce the highest formation energy based on the density functional theory calculations, improving the stability of atom‐dispersive materials. Therefore, via the combination of experimental and theoretical proofs, this study suggests the exact location of In atoms in g‐C3N4 structures, which can help boost the catalytic production of H2O2.

Từ khóa


Tài liệu tham khảo

10.1002/EXP.20230001

10.1016/j.xcrp.2021.100355

10.1021/acs.chemrev.9b00201

10.1002/cnl2.65

10.1016/j.trechm.2021.11.005

10.1038/nature22012

10.1038/238037a0

10.1021/cr500310b

10.1002/anie.201911609

10.1039/D0CS00458H

10.1016/j.cej.2022.138489

10.1002/adfm.202005158

10.1038/nmat2317

10.1002/adma.200802627

10.1016/j.apcatb.2017.06.003

10.1038/s41929-021-00605-1

10.1002/adma.202306831

10.1039/D2CS00806H

10.1007/s40820-023-01231-1

10.1021/acscatal.7b03512

10.1021/acsaem.9b01641

Yang X., 2021, New J. Chem., 45, 2021

Yang X., 2021, New J. Chem., 45, 2021

10.1002/adfm.202302824

10.1021/acsanm.2c04829

10.1002/adma.202206569

10.1002/adma.201908505

10.1039/D2NA00909A

10.1016/j.cej.2023.143007

10.1021/acscatal.5b02185

10.1016/j.cej.2021.132032

10.1016/j.cej.2023.147509

10.1039/D2SE01634F

10.1039/D2CC02861A

10.1021/jacs.3c03785

10.1039/D2DT01819E

10.1016/j.jmst.2019.09.018

10.1021/acscatal.2c03523

10.1016/j.apcatb.2016.10.014

10.1021/jacs.3c05234

10.1016/j.jechem.2020.05.043

10.1039/C7NR09660G

Kim J. S., 2017, Catal. Today, 8, 293

10.1021/acscatal.5b00408

10.1002/smll.202003914

Zhao S., 2018, ACS Appl. Energy Mater., 1, 5286

10.1039/c4ta01133c

10.1038/s41467-020-15782-z

10.1021/acsanm.2c04632

10.1021/acs.jpcc.3c02076

10.1016/j.apcatb.2019.118054

10.1021/acsapm.2c02057

10.1039/D1NA00098E

10.1038/s41598-022-17940-3

10.1021/acs.jpcc.8b01388

10.1021/acsanm.0c03317

10.1103/RevModPhys.85.1583

10.1016/j.diamond.2004.02.009

10.1016/j.actamat.2021.117228

10.1007/s10853-008-2573-6

10.1007/978-3-642-97512-7

10.1007/s42765-023-00354-9

10.1039/D3CC04800D

10.1039/C9CY00449A

10.1021/jp301026y

10.1039/C0EE00309C

10.1016/j.apcatb.2016.01.012

10.1021/acscatal.3c02565

10.1016/j.apcatb.2023.122714