Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid‐State NMR Spectroscopy, and Theoretical Calculations—Structural Characterization of a Carbon Nitride Polymer

Chemistry - A European Journal - Tập 13 Số 17 - Trang 4969-4980 - 2007
Bettina V. Lotsch1, Markus Döblinger1, Jan Sehnert2, Lena Seyfarth2, Jürgen Senker2, Oliver Oeckler1, Wolfgang Schnick1
1Department Chemie und Biochemie, Ludwig‐Maximilians‐Universität, Butenandtstrasse 5–13 (D), 81377 München, Germany, Fax: (+49) 89‐2180‐77440
2Anorganische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany, Fax: (+49) 921-55-2788

Tóm tắt

Abstract

Poly(aminoimino)heptazine, otherwise known as Liebig's melon, whose composition and structure has been subject to multitudinous speculations, was synthesized from melamine at 630 °C under the pressure of ammonia. Electron diffraction, solid‐state NMR spectroscopy, and theoretical calculations revealed that the nanocrystalline material exhibits domains well‐ordered in two dimensions, thereby allowing the structure solution in projection by electron diffraction. Melon ([C6N7(NH2)(NH)]n, plane group p2 gg, a=16.7, b=12.4 Å, γ=90°, Z=4), is composed of layers made up from infinite 1D chains of NH‐bridged melem (C6N7(NH2)3) monomers. The strands adopt a zigzag‐type geometry and are tightly linked by hydrogen bonds to give a 2D planar array. The inter‐layer distance was determined to be 3.2 Å from X‐ray powder diffraction. The presence of heptazine building blocks, as well as NH and NH2 groups was confirmed by 13C and 15N solid‐state NMR spectroscopy using 15N‐labeled melon. The degree of condensation of the heptazine core was further substantiated by a 15N direct excitation measurement. Magnetization exchange observed between all 15N nuclei using a fp‐RFDR experiment, together with the CP‐MAS data and elemental analysis, suggests that the sample is mainly homogeneous in terms of its basic composition and molecular building blocks. Semiempirical, force field, and DFT/plane wave calculations under periodic boundary conditions corroborate the structure model obtained by electron diffraction. The overall planarity of the layers is confirmed and a good agreement is obtained between the experimental and calculated NMR chemical shift parameters. The polymeric character and thermal stability of melon might render this polymer a pre‐stage of g‐C3N4 and portend its use as a promising inert material for a variety of applications in materials and surface science.

Từ khóa


Tài liệu tham khảo

 

10.1103/PhysRevB.32.7988

10.1126/science.245.4920.841

10.1016/0254-0584(95)01607-V

10.1126/science.271.5245.53

Liebig J., 1834, Ann. Pharm., 10, 10

10.1021/ja01424a007

 

10.1021/ja01861a038

10.1073/pnas.23.12.615

10.1021/cr50019a004

 

Costa L., 1989, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 30, 531

10.1002/jctb.5010090608

 

10.1016/S0038-1098(98)00631-0

10.1021/cm00050a005

10.1021/cm000570y

10.1016/j.cplett.2003.09.009

10.1021/nl015626h

10.1021/cm00055a023

10.1023/A:1004798509417

10.1021/cm000328r

10.1021/cm00042a018

10.1021/ja048939y

10.1039/b109700h

10.1016/S1387-1609(00)86433-6

10.1021/ja0103849

10.1039/b311390f

10.1016/S0925-9635(99)00054-0

 

10.1016/j.ccr.2004.02.001

10.1016/S0925-9635(99)00142-9

10.1016/S0921-5093(01)01075-9

10.1103/PhysRevB.58.13918

10.1039/b007673m

10.1039/b007165j

10.1039/b005982j

10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G

10.1002/chem.200304829

10.1039/a805536j

10.1039/b111062b

10.1021/ja0357689

 

10.1002/adma.200401756

10.1002/ange.200600412

10.1002/anie.200600412

 

10.1021/cm050350q

10.1021/cm052342f

 

10.1021/ja00384a046

10.1021/j150663a026

10.1021/ja00322a014

10.1021/ja01190a503

10.1021/ja01629a041

 

10.1070/RC1964v033n07ABEH001443

Finkel'shtein A. I., 1959, Opt. i Spektr., 6, 17

 

10.5012/bkcs.2004.25.4.466

10.3184/030823403103174795

10.1016/S1386-1425(98)00244-3

10.1039/tf9595500193

10.1070/RC1962v031n12ABEH001334

 

10.1246/nikkashi1898.64.8_1452

10.1246/nikkashi1948.85.3_168

B. V. Lotsch W. Schnick Chem. Eur. J..

Khorosheva V. V., 1962, Zh. Fiz. Khim., 36, 1055

B. Jürgens

10.1002/(SICI)1097-458X(199806)36:6<407::AID-OMR295>3.0.CO;2-Y

 

A. Sattler Diploma thesis University of Munich (Germany) 2005;

10.1002/zaac.200500017

J. Sehnert K. Bärwinkel J. Senker J. Phys. Chem. B 2007 submitted.

 

10.1107/S0108767399009605

10.1038/382144a0

10.1524/zkri.218.4.259.20741

10.1016/j.ultramic.2005.07.002

10.1107/S0108767399010818

10.1524/zkri.218.7.458.20714

10.1016/0304-3991(94)90039-6

 

10.1107/S0021889898007717

10.1107/S0021889892010331

10.1107/S0021889800018227

The structure solution was verified by using precession intensity data. Owing to their robustness with respect to sample misalignment and less pronounced dynamical effects the data quality obtained under otherwise identical experimental conditions can be improved. Accordingly Rrimis 20 % and the straightforward structure solution has a figure of merit of 19.5 %. The structure refinement (184 independent reflections no. of reflections/parameter ≈6 dmin.0.78 Å) was less successful due to the large sample thickness which gives rise to stronger dynamical effects (cf. Figure 11 middle).

 

10.1039/b003010o

10.1021/ja00170a016

 

10.1107/S0365110X61002709

10.1107/S0365110X61003065

10.1002/jcc.540100209

Gaussian 03 Revision C.02 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman J. A. Montgomery  Jr. T. Vreven K. N. Kudin J. C. Burant J. M. Millam S. S. Iyengar J. Tomasi V. Barone B. Mennucci M. Cossi G. Scalmani N. Rega G. A. Petersson H. Nakatsuji M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai M. Klene X. Li J. E. Knox H. P. Hratchian J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski P. Y. Ayala K. Morokuma G. A. Voth P. Salvador J. J. Dannenberg V. G. Zakrzewski S. Dapprich A. D. Daniels M. C. Strain O. Farkas D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. V. Ortiz Q. Cui A. G. Baboul S. Clifford J. Cioslowski B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara M. Challacombe P. M. W. Gill B. Johnson W. Chen M. W. Wong C. Gonzalez and J. A. Pople Gaussian Inc. Wallingford CT 2004.

10.1088/0953-8984/14/11/301

10.1021/j100389a010

 

10.1063/1.458452

10.1063/1.1316015

10.1103/PhysRevB.59.11683

10.1002/ange.200603851

10.1002/anie.200603851

10.1063/1.470372

10.1016/0009-2614(90)87239-N

10.1063/1.1359445

 

10.1016/0304-3991(93)90221-I

10.1016/0304-3991(93)90058-6

Weber S., Java Structure Viewer, 1

10.1524/zkri.218.4.308.20739

10.1016/0304-3991(87)90080-5

G. M. Sheldrick SHELX‐97 Programs for the solution and the refinement of crystal structures University of Göttingen Göttingen (Germany) 1997.

10.1107/S0567739468000756