Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice

eScience - Tập 3 - Trang 100117 - 2023
Liang Hu1,2, Bingzhang Yang1, Zhipeng Hou3, Yangfan Lu1, Weitao Su1, Lingwei Li1
1Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
2State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
3South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China

Tài liệu tham khảo

Lin, 2019, Two-dimensional spintronics for low-power electronics, Nat. Electron., 2, 274, 10.1038/s41928-019-0273-7 Avsar, 2020, Colloquium: spintronics in graphene and other two-dimensional materials, Rev. Mod. Phys., 92, 10.1103/RevModPhys.92.021003 Cortie, 2020, Two-dimensional magnets: forgotten history and recent progress towards spintronic applications, Adv. Funct. Mater., 30, 10.1002/adfm.201901414 Wang, 2020, Above room-temperature ferromagnetism in wafer-scale two-dimensional van der waals Fe3GeTe2 tailored by a topological insulator, ACS Nano, 14, 10045, 10.1021/acsnano.0c03152 Zhu, 2022, Interface-enhanced ferromagnetism with long-distance effect in van der waals semiconductor, Adv. Funct. Mater., 32 Deng, 2018, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature, 563, 94, 10.1038/s41586-018-0626-9 Seo, 2020, Nearly room temperature ferromagnetism in a magnetic metal-rich van der waals metal, Sci. Adv., 6, 10.1126/sciadv.aay8912 May, 2019, Ferromagnetism near room temperature in the cleavable van der waals crystal Fe5GeTe2, ACS Nano, 13, 4436, 10.1021/acsnano.8b09660 Hu, 2021, Polymer-buried van der waals magnets for promising wearable room-temperature spintronics, Mater. Horiz., 8, 3306, 10.1039/D1MH01439K Liu, 2020, Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse, Phys. Rev. Lett., 125, 10.1103/PhysRevLett.125.267205 Wang, 2018, Electric-field control of magnetism in a few-layered van der waals ferromagnetic semiconductor, Nat. Nanotechnol., 13, 554, 10.1038/s41565-018-0186-z Jiang, 2018, Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol., 13, 549, 10.1038/s41565-018-0135-x Mermin, 1966, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., 17, 1133, 10.1103/PhysRevLett.17.1133 Fei, 2018, Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater., 17, 778, 10.1038/s41563-018-0149-7 Weber, 2019, Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe3-xGeTe2, Nano Lett., 19, 5031, 10.1021/acs.nanolett.9b01287 Jang, 2020, Origin of ferromagnetism and the effect of doping on Fe3GeTe2, Nanoscale, 12, 13501, 10.1039/C9NR10171C Wang, 2020, Modifications of magnetic anisotropy of Fe3GeTe2 by the electric field effect, Appl. Phys. Lett., 116 Shen, 2021, Magnetic ground state and electron-doping tuning of curie temperature in Fe3GeTe2: first-principles studies, Phys. Rev. B, 103, 10.1103/PhysRevB.103.085102 Zhuo, 2021, Manipulating ferromagnetism in few-layered Cr2Ge2Te6, Adv. Mater., 33, 10.1002/adma.202008586 Ma, 2022, 2D magnetic semiconductor Fe3GeTe2 with few and single layers with a greatly enhanced intrinsic exchange bias by liquid-phase exfoliation, ACS Nano, 16, 19439, 10.1021/acsnano.2c09143 Shi, 2020, Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics, Adv. Mater., 32, 10.1002/adma.201907244 Lin, 2021, High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices, Chem, 7, 1887, 10.1016/j.chempr.2021.03.022 Hu, 2020, Direct bandgap opening in sodium-doped antimonene quantum dots: an emerging 2D semiconductor, Mater. Horiz., 7, 1588, 10.1039/D0MH00440E Cantos-Prieto, 2021, Layer-dependent mechanical properties and enhanced plasticity in the van der waals chromium trihalide magnets, Nano Lett., 21, 3379, 10.1021/acs.nanolett.0c04794 Mi, 2022, Variation between antiferromagnetism and ferrimagnetism in NiPS3 by electron doping, Adv. Funct. Mater., 32, 10.1002/adfm.202112750 Wang, 2019, Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation, J. Am. Chem. Soc., 141, 17166, 10.1021/jacs.9b06929 Biesinger, 2011, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257, 2717, 10.1016/j.apsusc.2010.10.051 Wang, 2021, Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism, Adv. Mater., 33 Jie-Min Xu, 2020, Possible tricritical behavior and anomalous lattice softening in van der waals itinerant ferromagnet Fe3GeTe2 under high pressure, Chin. Phys. Lett., 37 Du, 2019, Lattice dynamics, phonon chirality, and spin–phonon coupling in 2D itinerant ferromagnet Fe3GeTe2, Adv. Funct. Mater., 29, 10.1002/adfm.201904734 Kong, 2021, Thickness and spin dependence of Raman modes in magnetic layered Fe3GeTe2, Adv. Electro. Mater., 7 Pathak, 2014, Photoluminescence and epr studies on Fe3+ doped ZnAl2O4: an evidence for local site swapping of Fe3+ and formation of inverse and normal phase, Dalton Trans., 43, 9313, 10.1039/c4dt00741g Liu, 2022, Defects modify anisotropic saturation magnetization in transparent and flexible Hf0.95Co0.05O2 thin films for wearable device, Appl. Phys. Lett., 121 Zhang, 2016, Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te6, Jpn. J. Appl. Phys., 55, 10.7567/JJAP.55.033001 Zhang, 2021, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun., 12, 2492, 10.1038/s41467-021-22777-x Barzola-Quiquia, 2015, Magnetic order and superconductivity observed in bundles of double-wall carbon nanotubes, Carbon, 88, 16, 10.1016/j.carbon.2015.02.062 Felner, 2014, Superconductivity and unusual magnetic behavior in amorphous carbon, Mater. Res. Express, 1, 10.1088/2053-1591/1/1/016001 Yang, 2007, Structural and magnetic properties of spin- and charge-doped Sr0.8La0.2Ti0.9Co0.1O3, Appl. Phys. Lett., 91 Dor, 2013, A chiral-based magnetic memory device without a permanent magnet, Nat. Commun., 4, 2256, 10.1038/ncomms3256 Ben Dor, 2017, Unusual ZFC and FC magnetic behavior in thin co multi-layered structure, J. Magn. Magn. Mater., 428, 357, 10.1016/j.jmmm.2016.12.104 Hu, 2021, Two-dimensional magneto-photoconductivity in non-van der waals manganese selenide, Mater. Horiz., 8, 1286, 10.1039/D1MH00009H Zhang, 2018, Clifford algebra approach of 3D Ising model, Adv. Appl. Clifford Algebras, 29, 12, 10.1007/s00006-018-0923-2 Ising, 1925, Beitrag zur theorie des ferromagnetismus, Z. Phys., 31, 253 León-Brito, 2016, Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2, J. Appl. Phys., 120, 10.1063/1.4961592 Wang, 2017, Anisotropic anomalous hall effect in triangular itinerant ferromagnet Fe3GeTe2, Phys. Rev. B, 96, 10.1103/PhysRevB.96.134428 May, 2016, Magnetic structure and phase stability of the van der waals bonded ferromagnet Fe3-xGeTe2, Phys. Rev. B, 93, 10.1103/PhysRevB.93.014411 Liu, 2017, Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy, NPJ 2D Mater. Appl., 1, 30, 10.1038/s41699-017-0033-3 Yi, 2016, Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2, 2D Mater., 4, 10.1088/2053-1583/4/1/011005 Kim, 2019, Antiferromagnetic coupling of van der waals ferromagnetic Fe3GeTe2, Nanotechnology, 30, 10.1088/1361-6528/ab0a37 Binasch, 1989, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, 39, 4828, 10.1103/PhysRevB.39.4828 Nogués, 2000, Correlation between antiferromagnetic interface coupling and positive exchange bias, Phys. Rev. B, 61, 1315, 10.1103/PhysRevB.61.1315 Ohldag, 2003, Correlation between exchange bias and pinned interfacial spins, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.017203 Zhu, 2020, Exchange bias in van der waals CrCl3/Fe3GeTe2 heterostructures, Nano Lett., 20, 5030, 10.1021/acs.nanolett.0c01149 Zhang, 2020, Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der waals heterostructures, Adv. Mater., 32 Dai, 2021, Enhancement of the coercive field and exchange bias effect in Fe3GeTe2/MnPX3 (X = S and Se) van der waals heterostructures, ACS Appl. Mater. Interfaces, 13, 24314, 10.1021/acsami.1c05265 Zheng, 2020, Gate-tuned interlayer coupling in van der waals ferromagnet Fe3GeTe2 nanoflakes, Phys. Rev. Lett., 125, 10.1103/PhysRevLett.125.047202 Gweon, 2021, Exchange bias in weakly interlayer-coupled van der waals magnet Fe3GeTe2, Nano Lett., 21, 1672, 10.1021/acs.nanolett.0c04434 Rana, 2014, Controlling the coexisting vertical magnetization shift and exchange bias in La0.3Sr0.7FeO3/SrRuO3 bilayers, Appl. Phys. Lett., 104, 10.1063/1.4867352 Zheng, 2017, Oxygen deficiency and cooling field driven vertical hysteretic shift in epitaxial SrRuO3/SrTiO3 heterostructures, Appl. Phys. Lett., 111, 10.1063/1.5000866 Zhang, 2022, Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries, eScience, 2, 405, 10.1016/j.esci.2022.07.001