Unlocking the bacterial contact-dependent antibacterial activity to engineer a biocontrol alliance of two species from natural incompatibility to artificial compatibility
Tóm tắt
Từ khóa
Tài liệu tham khảo
Basler M, Ho B, Mekalanos J (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152(4):884–894. https://doi.org/10.1016/j.cell.2013.01.042
Bayer-Santos E, Cenens W, Matsuyama B et al (2019) The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog 15(9):e1007651. https://doi.org/10.1371/journal.ppat.1007651
Bernal P, Allsopp L, Filloux A, Llamas M (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 11(4):972–987. https://doi.org/10.1038/ismej.2016.169
Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microb Biotechnol 28(4):1327–1350. https://doi.org/10.1007/s11274-011-0979-9
Bottai D, Gröschel M, Brosch R (2016) Type VII secretion systems in gram-positive bacteria. Springer International Publishing, Cham, pp 235–265. https://doi.org/10.1007/82_2015_5015
Dong L, Guo Q, Wang P, Zhang X, Su Z, Zhao W, Lu X, Li S, Ma P (2020) Qualitative and quantitative analyses of the colonization characteristics of Bacillus subtilis strain NCD-2 on cotton root. Curr Microbiol 77(8):1600–1609. https://doi.org/10.1007/s00284-020-01971-y
Finn R, Clements J, Eddy S (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(suppl):W29–W37. https://doi.org/10.1093/nar/gkr367
Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044
Galan JE, Waksman G (2018) Protein-injection machines in bacteria. Cell 172(6):1306–1318. https://doi.org/10.1016/j.cell.2018.01.034
Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319. https://doi.org/10.1038/nrmicro1129
Hachani A, Wood T, Filloux A (2016) Type VI secretion and anti-host effectors. Curr Opin Microbiol 29:81–93. https://doi.org/10.1016/j.mib.2015.11.006
Hernandez R, Gallegos-Monterrosa R, Coulthurst SJ (2020) Type VI secretion system effector proteins: effective weapons for bacterial competitiveness. Cell Microbiol 22(9):e13241. https://doi.org/10.1111/cmi.13241
Laborda P, Li C, Zhao Y et al (2019) Antifungal metabolite p-Aminobenzoic acid (pABA): mechanism of action and efficacy for the biocontrol of pear bitter rot disease. J Agric Food Chem 67(8):2157–2165. https://doi.org/10.1021/acs.jafc.7b05084
Liang X, Kamal F, Pei T, Xu P, Mekalanos J, Dong T (2019) An onboard checking mechanism ensures effector delivery of the type VI secretion system in vibrio cholerae. Proc Natl Acad Sci U S A 116(46):23292–23298. https://doi.org/10.1073/pnas.1914202116
Lin L, Xu K, Shen D, Chou S, Gomelsky M, Qian G (2021) Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol 23(10):5704–5715. https://doi.org/10.1111/1462-2920.15674
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63(1):541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Massart S, Perazzolli M, Höfte M, Pertot I, Jijakli MH (2015) Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. Biocontrol 60(6):725–746. https://doi.org/10.1007/s10526-015-9686-z
Mendes R, Garbeva P, Raaijmakers J (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663. https://doi.org/10.1111/1574-6976.12028
Mueller U, Sachs J (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617. https://doi.org/10.1016/j.tim.2015.07.009
Qian G, Wang Y, Liu Y, Xu F, He YW, Du L, Venturi V, Fan J, Hu B, Liu F (2013) Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Appl Environ Microbiol 79(21):6604–6616. https://doi.org/10.1128/AEM.01841-13
Shen X, Wang B, Yang N et al (2021) Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system. Environ Microbiol 23(8):4673–4688. https://doi.org/10.1111/1462-2920.15662
Souza D, Oka G, Alvarez-Martinez C et al (2015) Bacterial killing via a type IV secretion system. Nat Commun 6(1). https://doi.org/10.1038/ncomms7453
Trunk K, Peltier J, Liu Y, Dill B et al (2018) The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3(8):920–931. https://doi.org/10.1038/s41564-018-0191-x
Xu K, Lin L, Shen D, Chou S, Qian G (2021) Clp is a “busy” transcription factor in the bacterial warrior, Lysobacter enzymogenes. Comput Struct Biotechnol J 19:3564–3572. https://doi.org/10.1016/j.csbj.2021.06.020
Yang M, Ren S, Shen D, Yang N, Wang B, Han S, Shen X, Chou SH, Qian G (2020) An intrinsic mechanism for coordinated production of the contact-dependent and contact-independent weapon systems in a soil bacterium. PLoS Pathog 16(10):e1008967. https://doi.org/10.1371/journal.ppat.1008967
Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51(1):64–72. https://doi.org/10.1128/aac.00931-06