Universality of weighted composition operators on L2([0, 1]) and Sobolev spaces

Elodie Pozzi1
1Université de Lyon; Université Lyon 1; INSA de Lyon; Ecole Centrale de Lyon; CNRS, UMR5208, Institut Camille Jordan; 43 bld. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995.

P. Borwein and T. Erdélyi, The full Müntz theorem in C[0, 1] and L1[0, 1], J. London Math. Soc. (2), 54 (1996), 102–110.

S. R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc., 23 (1969), 526–527.

I. Chalendar and J. Esterle, Le problème du sous-espace invariant, Development of mathematics 1950–2000, Birkhäuser, Basel, 2000, 235–267.

I. Chalendar and J. R. Partington, On the structure of invariant subspaces for isometric composition operators on $$H^2 (\mathbb{D})$$ and $$H^2 (\mathbb{C}_+)$$, Arch. Math. (Basel), 81 (2003), 193–207.

J. Mashreghi, Representation theorems in Hardy spaces, Cambridge University Press, 74, 2009.

V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser Verlag, 2003.

E. Nordgren, P. Rosenthal and F. S. Wintrobe, Invertible composition operators on Hp, J. Funct. Anal., 73 (1987), 324–344.

J. R. Partington and E. Pozzi, Universal shifts and composition operators, Journal of Operators and Matrices, 5 (2011), 455–467.

H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, Berlin — Heidelberg — New York, 1973.

W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, 1987.