Universality in the electronic structure of 3d transition metal oxides
Tài liệu tham khảo
Mattheiss, 1972, Electronic structure of the 3d transition-metal monoxides, I. Energy-Band Results, Phys. Rev. B, 5, 290
Satpathy, 1996, Electronic structure of the perovskite oxides: La1−xCaxMnO3, Phys. Rev. Lett., 76, 960, 10.1103/PhysRevLett.76.960
Meinert, 2014, Electronic structure and optical band gap determination of NiFe2O4, J. Phys. Condens. Matter, 26, 115503, 10.1088/0953-8984/26/11/115503
Noh, 2014, A density functional theory investigation of the electronic structure and spin moments of magnetite, Sci. Technol. Adv. Mater., 15, 044202, 10.1088/1468-6996/15/4/044202
Tsirlin, 2014, Importance of tetrahedral coordination for high-valent transition-metal oxides: YCrO4 as a model system, Phys. Rev. B, 90, 085106, 10.1103/PhysRevB.90.085106
Radtke, 2010, Interplay between structural, electronic, and magnetic degrees of freedom in Sr3Cr2O8, Phys. Rev. Lett., 105, 036401, 10.1103/PhysRevLett.105.036401
Pavarini, 2004, Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites, Phys. Rev. Lett., 92, 176403, 10.1103/PhysRevLett.92.176403
Pavarini, 2005, How chemistry controls electron localization in 3d1 perovskites: a Wannier-function study, New. J. Phys., 7, 188, 10.1088/1367-2630/7/1/188
Georges, 2013, Strong correlations from Hund's coupling, Annu. Rev. Condens., Matter Phys., 4, 137
Inoue, 1998, Bandwidth control in a perovskite-type 3d1 -correlated metal Ca1−xSrxVO3. I. Evolution of the electronic properties and effective mass, Phys. Rev. B, 58, 4372, 10.1103/PhysRevB.58.4372
Pickett, 1996, Electronic structure and half-metallic transport in the La1-xCaxMnO3 system, Phys. Rev. B, 53, 1146, 10.1103/PhysRevB.53.1146
Piskunov, 2007, Electronic and magnetic structure of La0.875Sr0.125MnO3 calculated by means of hybrid density-functional theory, Phys. Rev. B, 76, 012410, 10.1103/PhysRevB.76.012410
Pavone, 2014, First-principles study of lanthanum strontium manganite: insights into electronic structure and oxygen vacancy formation, J. Phys. Chem. C, 118, 13346, 10.1021/jp500352h
Paraskevopoulos, 2000, Magnetic properties and the phase diagram of La1−xSrxMnO3 for x≤0.2, J. Phys. Condens. Matter, 12, 3993, 10.1088/0953-8984/12/17/307
Fang, 2002, Structural distortion and magnetism in transition metal oxides: crucial roles of orbital degrees of freedom, J. Phys. Condens. Matter, 14, 3001, 10.1088/0953-8984/14/11/312
Chen, 2012, Ferroelectric control of magnetization in La1−xSrxMnO3 manganites: a first-principles study, Phys. Rev. B, 86, 024433, 10.1103/PhysRevB.86.024433
Mizokawa, 1996, Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations, Phys. Rev. B, 54, 5368, 10.1103/PhysRevB.54.5368
Moritomo, 2000, Electronic structure of double-perovskite transition-metal oxides, Phys. Rev. B, 61, R7827, 10.1103/PhysRevB.61.R7827
Morin, 1959, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., 3, 34, 10.1103/PhysRevLett.3.34
Roth, 1958, Magnetic structures of MnO, FeO, CoO, and NiO, Phys. Rev., 110, 1333, 10.1103/PhysRev.110.1333
Mitchell, 1996, Ab initio electric-field gradients and electron densities at 27Al, 57Fe, and 67Zn in the spinels ZnAl2O4 and ZnFe2O4, Phys. Rev. B, 53, 7684, 10.1103/PhysRevB.53.7684
Jena, 2016, Unconventional magnetism and band gap formation in LiFePO4: consequence of polyanion induced non-planarity, Sci. Rep., 6, 19573, 10.1038/srep19573
Tang, 2003, Electronic structure of FePO4, LiFePO4, and related materials, Phys. Rev. B, 68, 165107, 10.1103/PhysRevB.68.165107
Shi, 2005, First-principles investigation of the structural, magnetic, and electronic properties of olivine LiFePO4, Phys. Rev. B, 71, 144404, 10.1103/PhysRevB.71.144404
Zaghib, 2007, Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects, Chem. Mater., 19, 3740, 10.1021/cm0710296
Koiller, 1974, Electronic structure of the transition-metal monoxides, J. Phys. C Solid State Phys., 7, 299, 10.1088/0022-3719/7/2/010
McCammon, 1984, The effects of pressure and temperature on nonstoichiometric wustite, FexO: the iron-rich phase boundary, Phys. Chem. Miner., 10, 106, 10.1007/BF00309644
Carey, 1991, Preparation and structural characterization of sputtered CoO, NIO, and Ni0.5Co0.5O thin epitaxial films, J. Mater. Res., 6, 2680, 10.1557/JMR.1991.2680
Irani, 1962, Effect of temperature on the structure of Manganites, J. Phys. Chem. Solid., 23, 711, 10.1016/0022-3697(62)90530-9
Soliman, 2011, Electronic structure calculations for ZnFe2O4, Phys. Rev. B, 83, 085205, 10.1103/PhysRevB.83.085205
Reehuis, 2003, Crystallographic and magnetic structure of ZnV2O4, Eur. Phys. J. B, 35, 311, 10.1140/epjb/e2003-00282-4
Sawada, 1997, Electron density study of spinels: zinc chromium oxide, Mater. Res. Bull., 32, 873, 10.1016/S0025-5408(97)00036-6
Gomes, 2005, Rietveld structure refinement of the cation distribution in ferrite fine particles studied by X-ray powder diffraction, J. Magn. Magn Mater., 289, 184, 10.1016/j.jmmm.2004.11.053
Dekker, 2007, ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc- d6-transition metal oxide, Appl. Phys. Lett., 90, 021903, 10.1063/1.2431548
Anisimov, 1993, density-functional theory and NiO photoemission spectra, Phys. Rev. B, 48, 16929, 10.1103/PhysRevB.48.16929
Kotliar, 2006, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys., 78, 865, 10.1103/RevModPhys.78.865
Hedin, 1965, New method for calculating the one-particle Green's function with application to the electron-gas problem, Phys. Rev., 139, A796, 10.1103/PhysRev.139.A796
Anisimov, 1991, Band theory and Mott insulators: hubbard U instead of stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943
Trimarchi, 2018, Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO, Phys. Rev. B, 97, 035107, 10.1103/PhysRevB.97.035107
Maitra, 2007, Orbital order in ZnV2O4, Phys. Rev. Lett., 99, 126401, 10.1103/PhysRevLett.99.126401
Johannes, 2012, Hole polaron formation and migration in olivine phosphate materials, Phys. Rev. B, 85, 115106, 10.1103/PhysRevB.85.115106
Bacq, 2005, First-principles study of LiMPO4 compounds (M = Mn, Fe, Co, Ni) as electrode material for lithium batteries, Philos. Mag., 85, 1747, 10.1080/14786430412331331880
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502
Terakura, 1984, Band theory of insulating transition-metal monoxides: band-structure calculations, Phys. Rev. B, 30, 4734, 10.1103/PhysRevB.30.4734
Mattheiss, 1972, Electronic structure of the 3d transition-metal monoxides. II. Interpretation, Phys. Rev. B, 5, 306, 10.1103/PhysRevB.5.306
Pratt, 1959, Optical absorption of CoO and MnO above and below the neel temperature, Phys. Rev., 116, 281, 10.1103/PhysRev.116.281
Huffman, 1969, Optical absorption spectra of crystal-field transitions in MnO, J. Chem. Phys., 50, 4092, 10.1063/1.1671670
Newman, 1959, Optical properties of nickel oxide, Phys. Rev., 114, 1507, 10.1103/PhysRev.114.1507
Stephens, 1961, Effect of pressure on the spectra of five nickel complexes, J. Chem. Phys., 34, 937, 10.1063/1.1731696
Mays, 1963, Nuclear magnetic resonances and Mn-O-P-O-Mn; superexchange linkages in paramagnetic and antiferromagnetic LiMnPO4, Phys. Rev., 131, 38, 10.1103/PhysRev.131.38
Sugiyama, 2012, Diffusive behavior in LiMPO4 with M = Fe, Co, Ni probed by muon-spin relaxation, Phys. Rev. B, 85, 054111, 10.1103/PhysRevB.85.054111
Santoro, 1966, Magnetic properties of LiCoPO4 and LiNiPO4, J. Phys. Chem. Solid., 27, 1192, 10.1016/0022-3697(66)90097-7
Santoro, 1967, Antiferromagnetism in LiFePO4, Acta Cryst., 22, 344, 10.1107/S0365110X67000672
Delacourt, 2005, Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials, J. Electrochem. Soc., 152, A913, 10.1149/1.1884787
Baker, 2011, Probing magnetic order in LiMPO4, M = Ni, Co, Fe and lithium diffusion in LixFePO4, Phys. Rev. B, 84, 174403, 10.1103/PhysRevB.84.174403
Allen, 2014, Transport properties of LiCoPO4 and Fe-substituted LiCoPO4, J. Power Sources, 254, 204, 10.1016/j.jpowsour.2013.12.111
Babu, 2016, Structural and dielectric studies of LiNiPO4 and LiNi0.5Co0.5PO4 cathode materials for lithium-ion batteries, J. Asian Ceram. Soc., 4, 269, 10.1016/j.jascer.2016.05.001
Booth, 1998, Lattice effects in La1-xCaxMnO3 (x = 0 − 1) : relationships between distortions, charge distribution, and magnetism, Phys. Rev. B, 57, 10440, 10.1103/PhysRevB.57.10440
Zhou, 2006, Anomalous electronic state in CaCrO3 and SrCrO3, Phys. Rev. Lett., 96, 046408, 10.1103/PhysRevLett.96.046408
Li, 2017, The structural properties of LaRO3 (R=Cr, Mn, Fe): a first-principles calculation, J. Phys.: Conf. Series, 827, 012015
Zhou, 2011, Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction, Phys. Rev. Lett., 106, 057201, 10.1103/PhysRevLett.106.057201
Mandal, 2004, Effect of Ce doping on structural, magnetic, and transport properties of SrMnO3 perovskite, Phys. Rev. B, 69, 224418, 10.1103/PhysRevB.69.224418
Lee, 2011, Large spin-phonon coupling and magnetically induced phonon anisotropy in SrMO3 perovskites (M = V,Cr,Mn,Fe,Co), Phys. Rev. B, 84, 104440, 10.1103/PhysRevB.84.104440
Choi, 2006, Electronic structures and magnetic properties of spinel ZnMn2O4 under high pressure, Phys. Rev. B, 74, 172103, 10.1103/PhysRevB.74.172103
Ganga, 2017, Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide, J. Phys. Condens. Matter, 29, 155802, 10.1088/1361-648X/aa58c2
Ugendar, 2017, Effect of frustrated exchange interactions and spin-half-impurity on the electronic structure of strongly correlated NiFe2O4, Phys. Rev. B, 96, 035138, 10.1103/PhysRevB.96.035138
Baidya, 2011, Electronic structure and phonons in La2CoMnO6 : a ferromagnetic insulator driven by Coulomb-assisted spin-orbit coupling, Phys. Rev. B, 84, 035131, 10.1103/PhysRevB.84.035131
Dymkowski, 2014, Strain-induced insulator-to-metal transition in LaTiO3 within DFT + DMFT, Phys. Rev. B, 89, 161109, 10.1103/PhysRevB.89.161109
Arima, 1993, Variation of optical gaps in perovskite-type 3d transition-metal oxides, Phys. Rev. B, 48, 17006, 10.1103/PhysRevB.48.17006
Morikawa, 1995, Spectral weight transfer and mass renormalization in Mott-Hubbard systems SrVO3 and CaVO3 : influence of long-range Coulomb interaction, Phys. Rev. B, 52, 13711, 10.1103/PhysRevB.52.13711
Zhou, 2006, Thermal expansion and structure of orthorhombic CaMnO3, J. Phys. Chem. Solid., 67, 1595, 10.1016/j.jpcs.2006.02.011
Nanda, 2010, Magnetic and orbital order in LaMnO3 under uniaxial strain: a model study, Phys. Rev. B, 81, 174423, 10.1103/PhysRevB.81.174423
Nanda, 2010, Density functional studies of LaMnO3 under uniaxial strain, J. Magn. Magn Mater., 322, 3653, 10.1016/j.jmmm.2010.07.017
Chakraborty, 2016, First principles study of the electronic structure and magnetic properties of spin chain compounds: Ca3ZnMnO6 and Ca3ZnCoO6, J. Phys. Condens. Matter, 28, 375501, 10.1088/0953-8984/28/37/375501
Bersuker, 2006
Kofu, 2009, Weakly coupled s=1/2 quantum spin singlets in Ba3Cr2O8, Phys. Rev. Lett., 102, 037206, 10.1103/PhysRevLett.102.037206
Chen, 2011, Electronic structure and bonding properties of cobalt oxide in the spinel structure, Phys. Rev. B, 83, 2452, 10.1103/PhysRevB.83.245204