Universality in the electronic structure of 3d transition metal oxides

Journal of Physics and Chemistry of Solids - Tập 123 - Trang 133-149 - 2018
Priyadarshini Parida1, Ravi Kashikar1, Ajit Jena1, B.R.K. Nanda1
1Condensed Matter Theory and Computational Lab, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India

Tài liệu tham khảo

Mattheiss, 1972, Electronic structure of the 3d transition-metal monoxides, I. Energy-Band Results, Phys. Rev. B, 5, 290 Satpathy, 1996, Electronic structure of the perovskite oxides: La1−xCaxMnO3, Phys. Rev. Lett., 76, 960, 10.1103/PhysRevLett.76.960 Meinert, 2014, Electronic structure and optical band gap determination of NiFe2O4, J. Phys. Condens. Matter, 26, 115503, 10.1088/0953-8984/26/11/115503 Noh, 2014, A density functional theory investigation of the electronic structure and spin moments of magnetite, Sci. Technol. Adv. Mater., 15, 044202, 10.1088/1468-6996/15/4/044202 Tsirlin, 2014, Importance of tetrahedral coordination for high-valent transition-metal oxides: YCrO4 as a model system, Phys. Rev. B, 90, 085106, 10.1103/PhysRevB.90.085106 Radtke, 2010, Interplay between structural, electronic, and magnetic degrees of freedom in Sr3Cr2O8, Phys. Rev. Lett., 105, 036401, 10.1103/PhysRevLett.105.036401 Pavarini, 2004, Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites, Phys. Rev. Lett., 92, 176403, 10.1103/PhysRevLett.92.176403 Pavarini, 2005, How chemistry controls electron localization in 3d1 perovskites: a Wannier-function study, New. J. Phys., 7, 188, 10.1088/1367-2630/7/1/188 Georges, 2013, Strong correlations from Hund's coupling, Annu. Rev. Condens., Matter Phys., 4, 137 Inoue, 1998, Bandwidth control in a perovskite-type 3d1 -correlated metal Ca1−xSrxVO3. I. Evolution of the electronic properties and effective mass, Phys. Rev. B, 58, 4372, 10.1103/PhysRevB.58.4372 Pickett, 1996, Electronic structure and half-metallic transport in the La1-xCaxMnO3 system, Phys. Rev. B, 53, 1146, 10.1103/PhysRevB.53.1146 Piskunov, 2007, Electronic and magnetic structure of La0.875Sr0.125MnO3 calculated by means of hybrid density-functional theory, Phys. Rev. B, 76, 012410, 10.1103/PhysRevB.76.012410 Pavone, 2014, First-principles study of lanthanum strontium manganite: insights into electronic structure and oxygen vacancy formation, J. Phys. Chem. C, 118, 13346, 10.1021/jp500352h Paraskevopoulos, 2000, Magnetic properties and the phase diagram of La1−xSrxMnO3 for x≤0.2, J. Phys. Condens. Matter, 12, 3993, 10.1088/0953-8984/12/17/307 Fang, 2002, Structural distortion and magnetism in transition metal oxides: crucial roles of orbital degrees of freedom, J. Phys. Condens. Matter, 14, 3001, 10.1088/0953-8984/14/11/312 Chen, 2012, Ferroelectric control of magnetization in La1−xSrxMnO3 manganites: a first-principles study, Phys. Rev. B, 86, 024433, 10.1103/PhysRevB.86.024433 Mizokawa, 1996, Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations, Phys. Rev. B, 54, 5368, 10.1103/PhysRevB.54.5368 Moritomo, 2000, Electronic structure of double-perovskite transition-metal oxides, Phys. Rev. B, 61, R7827, 10.1103/PhysRevB.61.R7827 Morin, 1959, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., 3, 34, 10.1103/PhysRevLett.3.34 Roth, 1958, Magnetic structures of MnO, FeO, CoO, and NiO, Phys. Rev., 110, 1333, 10.1103/PhysRev.110.1333 Mitchell, 1996, Ab initio electric-field gradients and electron densities at 27Al, 57Fe, and 67Zn in the spinels ZnAl2O4 and ZnFe2O4, Phys. Rev. B, 53, 7684, 10.1103/PhysRevB.53.7684 Jena, 2016, Unconventional magnetism and band gap formation in LiFePO4: consequence of polyanion induced non-planarity, Sci. Rep., 6, 19573, 10.1038/srep19573 Tang, 2003, Electronic structure of FePO4, LiFePO4, and related materials, Phys. Rev. B, 68, 165107, 10.1103/PhysRevB.68.165107 Shi, 2005, First-principles investigation of the structural, magnetic, and electronic properties of olivine LiFePO4, Phys. Rev. B, 71, 144404, 10.1103/PhysRevB.71.144404 Zaghib, 2007, Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects, Chem. Mater., 19, 3740, 10.1021/cm0710296 Koiller, 1974, Electronic structure of the transition-metal monoxides, J. Phys. C Solid State Phys., 7, 299, 10.1088/0022-3719/7/2/010 McCammon, 1984, The effects of pressure and temperature on nonstoichiometric wustite, FexO: the iron-rich phase boundary, Phys. Chem. Miner., 10, 106, 10.1007/BF00309644 Carey, 1991, Preparation and structural characterization of sputtered CoO, NIO, and Ni0.5Co0.5O thin epitaxial films, J. Mater. Res., 6, 2680, 10.1557/JMR.1991.2680 Irani, 1962, Effect of temperature on the structure of Manganites, J. Phys. Chem. Solid., 23, 711, 10.1016/0022-3697(62)90530-9 Soliman, 2011, Electronic structure calculations for ZnFe2O4, Phys. Rev. B, 83, 085205, 10.1103/PhysRevB.83.085205 Reehuis, 2003, Crystallographic and magnetic structure of ZnV2O4, Eur. Phys. J. B, 35, 311, 10.1140/epjb/e2003-00282-4 Sawada, 1997, Electron density study of spinels: zinc chromium oxide, Mater. Res. Bull., 32, 873, 10.1016/S0025-5408(97)00036-6 Gomes, 2005, Rietveld structure refinement of the cation distribution in ferrite fine particles studied by X-ray powder diffraction, J. Magn. Magn Mater., 289, 184, 10.1016/j.jmmm.2004.11.053 Dekker, 2007, ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc- d6-transition metal oxide, Appl. Phys. Lett., 90, 021903, 10.1063/1.2431548 Anisimov, 1993, density-functional theory and NiO photoemission spectra, Phys. Rev. B, 48, 16929, 10.1103/PhysRevB.48.16929 Kotliar, 2006, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys., 78, 865, 10.1103/RevModPhys.78.865 Hedin, 1965, New method for calculating the one-particle Green's function with application to the electron-gas problem, Phys. Rev., 139, A796, 10.1103/PhysRev.139.A796 Anisimov, 1991, Band theory and Mott insulators: hubbard U instead of stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943 Trimarchi, 2018, Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO, Phys. Rev. B, 97, 035107, 10.1103/PhysRevB.97.035107 Maitra, 2007, Orbital order in ZnV2O4, Phys. Rev. Lett., 99, 126401, 10.1103/PhysRevLett.99.126401 Johannes, 2012, Hole polaron formation and migration in olivine phosphate materials, Phys. Rev. B, 85, 115106, 10.1103/PhysRevB.85.115106 Bacq, 2005, First-principles study of LiMPO4 compounds (M = Mn, Fe, Co, Ni) as electrode material for lithium batteries, Philos. Mag., 85, 1747, 10.1080/14786430412331331880 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502 Terakura, 1984, Band theory of insulating transition-metal monoxides: band-structure calculations, Phys. Rev. B, 30, 4734, 10.1103/PhysRevB.30.4734 Mattheiss, 1972, Electronic structure of the 3d transition-metal monoxides. II. Interpretation, Phys. Rev. B, 5, 306, 10.1103/PhysRevB.5.306 Pratt, 1959, Optical absorption of CoO and MnO above and below the neel temperature, Phys. Rev., 116, 281, 10.1103/PhysRev.116.281 Huffman, 1969, Optical absorption spectra of crystal-field transitions in MnO, J. Chem. Phys., 50, 4092, 10.1063/1.1671670 Newman, 1959, Optical properties of nickel oxide, Phys. Rev., 114, 1507, 10.1103/PhysRev.114.1507 Stephens, 1961, Effect of pressure on the spectra of five nickel complexes, J. Chem. Phys., 34, 937, 10.1063/1.1731696 Mays, 1963, Nuclear magnetic resonances and Mn-O-P-O-Mn; superexchange linkages in paramagnetic and antiferromagnetic LiMnPO4, Phys. Rev., 131, 38, 10.1103/PhysRev.131.38 Sugiyama, 2012, Diffusive behavior in LiMPO4 with M = Fe, Co, Ni probed by muon-spin relaxation, Phys. Rev. B, 85, 054111, 10.1103/PhysRevB.85.054111 Santoro, 1966, Magnetic properties of LiCoPO4 and LiNiPO4, J. Phys. Chem. Solid., 27, 1192, 10.1016/0022-3697(66)90097-7 Santoro, 1967, Antiferromagnetism in LiFePO4, Acta Cryst., 22, 344, 10.1107/S0365110X67000672 Delacourt, 2005, Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials, J. Electrochem. Soc., 152, A913, 10.1149/1.1884787 Baker, 2011, Probing magnetic order in LiMPO4, M = Ni, Co, Fe and lithium diffusion in LixFePO4, Phys. Rev. B, 84, 174403, 10.1103/PhysRevB.84.174403 Allen, 2014, Transport properties of LiCoPO4 and Fe-substituted LiCoPO4, J. Power Sources, 254, 204, 10.1016/j.jpowsour.2013.12.111 Babu, 2016, Structural and dielectric studies of LiNiPO4 and LiNi0.5Co0.5PO4 cathode materials for lithium-ion batteries, J. Asian Ceram. Soc., 4, 269, 10.1016/j.jascer.2016.05.001 Booth, 1998, Lattice effects in La1-xCaxMnO3 (x = 0 − 1) : relationships between distortions, charge distribution, and magnetism, Phys. Rev. B, 57, 10440, 10.1103/PhysRevB.57.10440 Zhou, 2006, Anomalous electronic state in CaCrO3 and SrCrO3, Phys. Rev. Lett., 96, 046408, 10.1103/PhysRevLett.96.046408 Li, 2017, The structural properties of LaRO3 (R=Cr, Mn, Fe): a first-principles calculation, J. Phys.: Conf. Series, 827, 012015 Zhou, 2011, Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction, Phys. Rev. Lett., 106, 057201, 10.1103/PhysRevLett.106.057201 Mandal, 2004, Effect of Ce doping on structural, magnetic, and transport properties of SrMnO3 perovskite, Phys. Rev. B, 69, 224418, 10.1103/PhysRevB.69.224418 Lee, 2011, Large spin-phonon coupling and magnetically induced phonon anisotropy in SrMO3 perovskites (M = V,Cr,Mn,Fe,Co), Phys. Rev. B, 84, 104440, 10.1103/PhysRevB.84.104440 Choi, 2006, Electronic structures and magnetic properties of spinel ZnMn2O4 under high pressure, Phys. Rev. B, 74, 172103, 10.1103/PhysRevB.74.172103 Ganga, 2017, Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide, J. Phys. Condens. Matter, 29, 155802, 10.1088/1361-648X/aa58c2 Ugendar, 2017, Effect of frustrated exchange interactions and spin-half-impurity on the electronic structure of strongly correlated NiFe2O4, Phys. Rev. B, 96, 035138, 10.1103/PhysRevB.96.035138 Baidya, 2011, Electronic structure and phonons in La2CoMnO6 : a ferromagnetic insulator driven by Coulomb-assisted spin-orbit coupling, Phys. Rev. B, 84, 035131, 10.1103/PhysRevB.84.035131 Dymkowski, 2014, Strain-induced insulator-to-metal transition in LaTiO3 within DFT + DMFT, Phys. Rev. B, 89, 161109, 10.1103/PhysRevB.89.161109 Arima, 1993, Variation of optical gaps in perovskite-type 3d transition-metal oxides, Phys. Rev. B, 48, 17006, 10.1103/PhysRevB.48.17006 Morikawa, 1995, Spectral weight transfer and mass renormalization in Mott-Hubbard systems SrVO3 and CaVO3 : influence of long-range Coulomb interaction, Phys. Rev. B, 52, 13711, 10.1103/PhysRevB.52.13711 Zhou, 2006, Thermal expansion and structure of orthorhombic CaMnO3, J. Phys. Chem. Solid., 67, 1595, 10.1016/j.jpcs.2006.02.011 Nanda, 2010, Magnetic and orbital order in LaMnO3 under uniaxial strain: a model study, Phys. Rev. B, 81, 174423, 10.1103/PhysRevB.81.174423 Nanda, 2010, Density functional studies of LaMnO3 under uniaxial strain, J. Magn. Magn Mater., 322, 3653, 10.1016/j.jmmm.2010.07.017 Chakraborty, 2016, First principles study of the electronic structure and magnetic properties of spin chain compounds: Ca3ZnMnO6 and Ca3ZnCoO6, J. Phys. Condens. Matter, 28, 375501, 10.1088/0953-8984/28/37/375501 Bersuker, 2006 Kofu, 2009, Weakly coupled s=1/2 quantum spin singlets in Ba3Cr2O8, Phys. Rev. Lett., 102, 037206, 10.1103/PhysRevLett.102.037206 Chen, 2011, Electronic structure and bonding properties of cobalt oxide in the spinel structure, Phys. Rev. B, 83, 2452, 10.1103/PhysRevB.83.245204