Universal quantum circuit of near-trivial transformations
Tóm tắt
Any unitary transformation can be decomposed into a product of a group of near-trivial transformations. We investigate in detail the construction of universal quantum circuit of near trivial transformations. We first construct two universal quantum circuits which can implement any single-qubit rotation R
y
(θ) and R
z
(θ) within any given precision, and then we construct universal quantum circuit implementing any single-qubit transformation within any given precision. Finally, a universal quantum circuit implementing any n-qubit near-trivial transformation is constructed using the universal quantum circuits of R
y
(θ) and R
z
(θ). In the universal quantum circuit presented, each quantum transformation is encoded to a bit string which is used as ancillary inputs. The output of the circuit consists of the related bit string and the result of near-trivial transformation. Our result may be useful for the design of universal quantum computer in the future.
Tài liệu tham khảo
Deutsch D. Quantum computational networks. Math Phys Sci, 1989, 425: 73–90
Ekert A, Jozsa R. Quantum computation and Shor’s factoring algorithm. Rev Mod Phys, 1996, 68(3): 733–753
Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26(5): 1411–1473
DiVincenzo D P. Two-bit gates are universal for quantum computation. Phys Rev A, 1995, 51(2): 1015–1022
Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and control of spin systems. Chem Phys, 2001, 267(1–3): 11–23
Paige C, Wei M. History and generality of the CS decomposition. Linear Algebra Appl, 1994, 208(209): 303–326
Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A, 1995, 52(5): 3457–3467
Zhang J, Vala J, Sastry S, et al. Exact two-qubit universal quantum circuit. Phys Rev Lett, 2003, 91(2): 027903
Vidal G, Dawson C M. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys Rev A, 2004, 69: 010301
Vatan F, Williams C. Optimal quantum circuits for general two-qubit gates. Phys Rev A, 2004, 69: 032315
Vatan F, Williams C. Realization of a general three-qubit quantum gate. arXiv: quant-ph/0401178, 2004
Wei H R, Di Y M, Zhang J. Modified Khaneja-Glaser decomposition and realization of three-qubit quantum gate. Chin Phys Lett, 2008, 25(9): 3107–3110
Möttönen M, Vartiainen J J, Bergholm V, et al. Quantum circuits for general multiqubit gates. Phys Rev Lett, 2004, 93: 130502
Nakajima Y, Kawano Y, Sekigawa H. A new algorithm for producing quantum circuits using KAK decompositions. Quantum Inf Comput, 2006, 6(1): 067–080 (also see: arXiv: quant-ph/0509196)
Bullock S S, Markov I L. Smaller circuits for arbitrary n-qubit diagonal computations. arXiv: quant-ph/0303039, 2003
Liu Y, Long G L, Sun Y. Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int J Quantum Inf, 2008, 6(3): 447–462
Sousa P BM, Ramos R V. Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate. Quantum Inf Comput, 2007, 7(3): 228–242
Long G L, Liu Y, Wang C. Allowable generalized quantum gates. Commun Theor Phys, 2009, 51: 65–67
Zhang Y, Cao H X, Li L. Realization of allowable generalized quantum gates. Sci China Phys Mech Astron, 2010, 53: 1878–1883
Bera D, Fenner S, Green F, et al. Efficient universal quantum circuits. Quantum Inf Comput, 2010 (also see: arxiv: quant-ph/0804.2429)
Nielsen M, Chuang I. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000
Fredkin E, Toffoli T. Conservative logic. Int J Theor Phys, 1982, 21(3): 219–253
Toffoli T. Reversible computing. Lecture Notes Comput Sci, 1980, 632-644
Toffoli T. Bicontinuous extensions of invertible combinatorial functions. Theor Comput Syst, 1981, 14(1): 13–23
Bennett C H. Logical reversibility of computation. IBM J Res Dev, 1973, 17(6): 525–532
Watrous J. On the complexity of simulating space-bounded quantum computations. Comput Complex, 2003, 12(1): 48–84