Universal quantum circuit of near-trivial transformations

Science China Physics, Mechanics & Astronomy - Tập 54 - Trang 1819-1827 - 2011
Min Liang1, Li Yang1
1State Key Laboratory of Information Security, Graduate University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Any unitary transformation can be decomposed into a product of a group of near-trivial transformations. We investigate in detail the construction of universal quantum circuit of near trivial transformations. We first construct two universal quantum circuits which can implement any single-qubit rotation R y (θ) and R z (θ) within any given precision, and then we construct universal quantum circuit implementing any single-qubit transformation within any given precision. Finally, a universal quantum circuit implementing any n-qubit near-trivial transformation is constructed using the universal quantum circuits of R y (θ) and R z (θ). In the universal quantum circuit presented, each quantum transformation is encoded to a bit string which is used as ancillary inputs. The output of the circuit consists of the related bit string and the result of near-trivial transformation. Our result may be useful for the design of universal quantum computer in the future.

Tài liệu tham khảo

Deutsch D. Quantum computational networks. Math Phys Sci, 1989, 425: 73–90 Ekert A, Jozsa R. Quantum computation and Shor’s factoring algorithm. Rev Mod Phys, 1996, 68(3): 733–753 Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26(5): 1411–1473 DiVincenzo D P. Two-bit gates are universal for quantum computation. Phys Rev A, 1995, 51(2): 1015–1022 Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and control of spin systems. Chem Phys, 2001, 267(1–3): 11–23 Paige C, Wei M. History and generality of the CS decomposition. Linear Algebra Appl, 1994, 208(209): 303–326 Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A, 1995, 52(5): 3457–3467 Zhang J, Vala J, Sastry S, et al. Exact two-qubit universal quantum circuit. Phys Rev Lett, 2003, 91(2): 027903 Vidal G, Dawson C M. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys Rev A, 2004, 69: 010301 Vatan F, Williams C. Optimal quantum circuits for general two-qubit gates. Phys Rev A, 2004, 69: 032315 Vatan F, Williams C. Realization of a general three-qubit quantum gate. arXiv: quant-ph/0401178, 2004 Wei H R, Di Y M, Zhang J. Modified Khaneja-Glaser decomposition and realization of three-qubit quantum gate. Chin Phys Lett, 2008, 25(9): 3107–3110 Möttönen M, Vartiainen J J, Bergholm V, et al. Quantum circuits for general multiqubit gates. Phys Rev Lett, 2004, 93: 130502 Nakajima Y, Kawano Y, Sekigawa H. A new algorithm for producing quantum circuits using KAK decompositions. Quantum Inf Comput, 2006, 6(1): 067–080 (also see: arXiv: quant-ph/0509196) Bullock S S, Markov I L. Smaller circuits for arbitrary n-qubit diagonal computations. arXiv: quant-ph/0303039, 2003 Liu Y, Long G L, Sun Y. Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int J Quantum Inf, 2008, 6(3): 447–462 Sousa P BM, Ramos R V. Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate. Quantum Inf Comput, 2007, 7(3): 228–242 Long G L, Liu Y, Wang C. Allowable generalized quantum gates. Commun Theor Phys, 2009, 51: 65–67 Zhang Y, Cao H X, Li L. Realization of allowable generalized quantum gates. Sci China Phys Mech Astron, 2010, 53: 1878–1883 Bera D, Fenner S, Green F, et al. Efficient universal quantum circuits. Quantum Inf Comput, 2010 (also see: arxiv: quant-ph/0804.2429) Nielsen M, Chuang I. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000 Fredkin E, Toffoli T. Conservative logic. Int J Theor Phys, 1982, 21(3): 219–253 Toffoli T. Reversible computing. Lecture Notes Comput Sci, 1980, 632-644 Toffoli T. Bicontinuous extensions of invertible combinatorial functions. Theor Comput Syst, 1981, 14(1): 13–23 Bennett C H. Logical reversibility of computation. IBM J Res Dev, 1973, 17(6): 525–532 Watrous J. On the complexity of simulating space-bounded quantum computations. Comput Complex, 2003, 12(1): 48–84