Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency

NPG Asia Materials - Tập 9 Số 7 - Trang e411-e411 - 2017
Su‐Hun Jeong1, Seonghoon Woo1, Tae‐Hee Han2, Minho Park1, Himchan Cho2, Young‐Hoon Kim2, Hyunsu Cho3, Hobeom Kim1, Seunghyup Yoo3, Tae‐Woo Lee2
1Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Gyungbuk, Republic of Korea
2Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
3Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N. & Heeger, A. J. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992).

Kumar, A. & Zhou, C. The race to replace tin-doped indium oxide: which material will win? ACS Nano 4, 11–14 (2010).

Seo, H.-K., Kim, H., Lee, J., Park, M.-H., Jeong, S.-H., Kim, Y.-H., Kwon, S.-J., Han, T.-H., Yoo, S. & Lee, T.-W. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv. Mater. 29 (2017).

Huang, J., Miller, P. F., Wilson, J. S., de Mello, A. J., de Mello, J. C. & Bradley, D. D. Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly (3,4-ethylenedioxythiophene)/poly (styrene sulfonate) films. Adv. Funct. Mater. 15, 290–296 (2005).

Kim, J. Y., Jung, J. H., Lee, D. E. & Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 126, 311–316 (2002).

Pettersson, L. A., Ghosh, S. & Inganäs, O. Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate). Org. Electron. 3, 143–148 (2002).

Ouyang, J., Chu, C. W., Chen, F. C., Xu, Q. & Yang, Y. High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15, 203–208 (2005).

Huang, J., Wang, X., Kim, Y. & Bradley, D. D. C. High efficiency flexible ITO-free polymer/fullerene photodiodes. Phys. Chem. Chem. Phys. 8, 3904–3908 (2006).

Admassie, S., Zhang, F., Manoj, A. G., Svensson, M., Andersson, M. R. & Inganäs, O. A polymer photodiode using vapour-phase polymerized PEDOT as an anode. Sol. Energy Mater. Sol. Cells 90, 133–141 (2006).

Fehse, K., Walzer, K., Leo, K., Lövenich, W. & Elschner, A. Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes. Adv. Mater. 19, 441–444 (2007).

Na, S. I., Kim, S. S., Jo, J. & Kim, D. Y. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061–4067 (2008).

Worfolk, B. J., Andrews, S. C., Park, S., Reinspach, J., Liu, N., Toney, M. F., Mannsfeld, S. C. B. & Bao, Z. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 112, 14138–14143 (2015).

Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T. M., Sojoudi, H., B. Stephen, B., Graham, S., Brédas, J.-L., Marder, S. R., Kahn, A. & Fenoll, M. A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332 (2012).

Winther-Jensen, B. & Krebs, F. C. High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition. Sol. Energy Mater. Sol. Cells 90, 123–132 (2006).

Levermore, P. A., Chen, L., Wang, X., Das, R. & Bradley, D. D. Fabrication of highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization and their application in efficient organic light-emitting diodes. Adv. Mater. 19, 2379–2385 (2007).

Yu, Z., Zhang, Q., Li, L., Chen, Q., Niu, X., Liu, X., Liu, J. & Pei, Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664 (2011).

Yu, Z., Li, L., Zhang, Q., Hu, W. & Pei, Q. Silver nanowire-polymer composite electrodes for efficiency polymer solar cells. Adv. Mater. 23, 4453 (2011).

Gaynor, W., Hofmann, S., Christoforo, M. G., Sachse, C., Mehra, S., Salleo, A., McGehee, M. D., Gather, M. C., Lüssem, B., Müller-Meskamp, L., Peumans, P. & Leo, K. Color in the corners: ITO-free white OLEDs with angular color stability. Adv. Mater. 25, 4006–4013 (2013).

Bade, S. G. R., Li, J., Shan, X., Ling, Y., Tian, Y., Dilbeck, T., Besara, T., Geske, T., Gao, H., Ma, B., Hanson, K., Siegrist, T., Xu, C. & Yu, Z. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano 10, 1795–1801 (2016).

Suzuki, S., Bower, C., Watanabe, Y. & Zhou, O. Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 76, 4007–4009 (2000).

Zhao, J., Han, J. & Lu, J. P. Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys. Rev. B 65, 193401 (2002).

Ou, E. C., Hu, L., Raymond, G. C. R., Soo, O. K., Pan, J., Zheng, Z., Park, Y., Hecht, D., Irvin, G., Drzaic, P. & Gruner, G. Surface-modified nanotube anodes for high performance light-emitting diodes. ACS Nano 3, 2258–2264 (2009).

Wu, J., Agrawal, M., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y. & Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010).

Sun, T., Wang, Z. L., Shi, Z. J., Ran, G. Z., Xu, W. J., Wang, Z. Y., Li, Y. Z., Dai, L. & Qin, G. G. Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 96, 133301 (2010).

Han, T. H., Lee, Y., Choi, M. R., Woo, S. H., Bae, S. H., Hong, B. H., Ahn, J.-H. & Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified grapheme anode. Nat. Photon. 6, 105–110 (2012).

Li, N., Oida, S., Tulevski, G. S., Han, S. J., Hannon, J. B., Sadana, D. K. & Chen, T. C. Efficient and bright organic light-emitting diodes on single-layer grapheme electrodes. Nat. Commun. 4, 2294 (2013).

Kim, H., Bae, S.-H., Han, T.-H., Lim, K.-G., Ahn, J.-H. & Lee, T.-W. Organic solar cells using CVD-grown graphene electrodes. Nanotechnology 25, 014012 (2014).

Kim, H., Byun, J., Bae, S.-H., Ahmed, T., Zhu, J.-X., Kwon, S.-J., Lee, Y., Min, S.-Y., Wolf, C., Seo, H.-K., Ahn, J.-H. & Lee, T.-W. On-fabrication solid-state N-doping of graphene by an electron transporting metal oxide layer for efficient inverted organic solar cells. Adv. Energy Mater. 6, 1600172 (2016).

Oh, J. Y., Kim, S., Baik, H. K. & Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 38, 4455–4461 (2016).

Kim, N., Kee, S., Lee, S. H., Lee, B. H., Kahng, Y. H., Jo, Y. R., Kim, B.-J. & Lee, K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26, 2268–2272 (2014).

Choi, M. R., Han, T. H., Lim, K. G., Woo, S. H., Huh, D. H. & Lee, T. W. Soluble self-doped conducting polymer compositions with tunable work function as hole injection/extraction layers in organic optoelectronics. Angew. Chem. Int. Ed. 50, 6274–6277 (2011).

Choudhury, K. R., Lee, J., Chopra, N., Gupta, A., Jiang, X., Amy, F. & So, F. Efficient hole injection in organic light-emitting diodes. Adv. Funct. Mater. 19, 491–496 (2009).

Huang, L. M., Tang, W. R. & Wen, T. C. Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation. J. Power Sources 164, 519–526 (2007).

Susac, D., Kono, M., Wong, K. C. & Mitchell, K. A. R. XPS study of interfaces in a two-layer light-emitting diode made from PPV and Nafion with ionically exchanged Ru(bpy)32+. Appl. Surf. Sci. 174, 43–50 (2001).

Lee, T. W., Chung, Y., Kwon, O. & Park, J. J. Self-organized gradient hole injection to improve the performance of polymer electroluminescent devices. Adv. Funct. Mater. 17, 390–396 (2007).

Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012).

Tan, Z. K., Moghaddam, R. S., Lai, M. L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L. M., Credgington, D., Hanusch, F., Bein, T., Snaith, H. J. & Friend, R. H. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

Cho, H., Jeong, S. H., Park, M. H., Kim, Y. H., Wolf, C., Lee, C. L., Im, S. H., Friend, R. H. & Lee, T.-W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

Kim, Y. H., Cho, H., Heo, J. H., Kim, T. S., Myoung, N., Lee, C. L., Im, S. H. & Lee, T.-W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2014).

Han, T. H., Choi, M. R., Woo, S. H., Min, S. Y., Lee, C. L. & Lee, T.-W. Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes. Adv. Mater. 24, 1487–1493 (2012).

Goldie, D. M. Transient space-charge-limited current pulse shapes in molecularly doped polymers. J. Phys. D Appl. Phys. 32, 3058–3067 (1999).

Campbell, I. H., Smith, D. L., Neef, C. J. & Ferraris, J. P. Consistent time-of-flight mobility measurements and polymer light-emitting diode current-voltage characteristics. Appl. Phys. Lett. 74, 2809–2811 (1999).

Murgatroyd, P. N. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 3, 151 (1970).